Your browser doesn't support javascript.
loading
Surfactant Charge Modulates Structure and Stability of Lipase-Embedded Monolayers at Marine-Relevant Aerosol Surfaces.
Luo, Man; Dommer, Abigail C; Schiffer, Jamie M; Rez, Donald J; Mitchell, Andrew R; Amaro, Rommie E; Grassian, Vicki H.
Afiliación
  • Luo M; Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States.
  • Dommer AC; Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States.
  • Schiffer JM; Janssen Pharmaceuticals , 3210 Merryfield Row , San Diego , California 92093 , United States.
  • Rez DJ; Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States.
  • Mitchell AR; Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States.
  • Amaro RE; Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States.
  • Grassian VH; Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States.
Langmuir ; 35(27): 9050-9060, 2019 07 09.
Article en En | MEDLINE | ID: mdl-31188612
ABSTRACT
Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface-active molecules such as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have the potential to influence SSA interfacial structure and chemistry. Elucidating the structure of the lipid monolayer at SSA interfaces and how this structure is altered upon interaction with a protein system like lipase is of interest, given the importance of how aerosols interact with sunlight, influence cloud formation, and provide surfaces for chemical reactions. Herein, we report an integrated experimental and computational study of Burkholderia cepacia lipase (BCL) embedded in a lipid monolayer and highlight the important role of electrostatic, rather than hydrophobic, interactions as a driver for monolayer stability. Specifically, we combine Langmuir film experiments and molecular dynamics (MD) simulations to examine the detailed interactions between the zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer and BCL. Upon insertion of BCL from the underlying subphase into the lipid monolayer, it is shown that BCL permeates and largely disorders the monolayer while strongly interacting with zwitterionic DPPC molecules, as experimentally observed by Langmuir adsorption curves and infrared reflectance absorbance spectroscopy. Explicitly solvated, all-atom MD is then used to provide insights into inter- and intramolecular interactions that drive these observations, with specific attention to the formation of salt bridges or ionic-bonding interactions. We show that after insertion into the DPPC monolayer, lipase is maintained at high surface pressures and in large BCL concentrations by forming a salt-bridge-stabilized lipase-DPPC complex. In comparison, when embedded in an anionic monolayer at low surface pressures, BCL preferentially forms intramolecular salt bridges, reducing its total favorable interactions with the surfactant and partitioning out of the monolayer shortly after injection. Overall, this study shows that the structure and dynamics of lipase-embedded SSA surfaces vary based on surface charge and pressure and that these variations have the potential to differentially modulate the properties of marine aerosols.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Tensoactivos / Burkholderia cepacia / Lipasa Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Tensoactivos / Burkholderia cepacia / Lipasa Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2019 Tipo del documento: Article