Your browser doesn't support javascript.
loading
Mesenchymal stromal cells modulate the molecular pattern of healing process in tissue-engineered urinary bladder: the microarray data.
Pokrywczynska, Marta; Rasmus, Marta; Jundzill, Arkadiusz; Balcerczyk, Daria; Adamowicz, Jan; Warda, Karolina; Buchholz, Lukasz; Drewa, Tomasz.
Afiliación
  • Pokrywczynska M; Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094, Marii Sklodowskiej Curie 9 Street, 85-094, Bydgoszcz, Poland. marta.pokrywczynska@interia.pl.
  • Rasmus M; Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094, Marii Sklodowskiej Curie 9 Street, 85-094, Bydgoszcz, Poland.
  • Jundzill A; Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094, Marii Sklodowskiej Curie 9 Street, 85-094, Bydgoszcz, Poland.
  • Balcerczyk D; Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094, Marii Sklodowskiej Curie 9 Street, 85-094, Bydgoszcz, Poland.
  • Adamowicz J; Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094, Marii Sklodowskiej Curie 9 Street, 85-094, Bydgoszcz, Poland.
  • Warda K; Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094, Marii Sklodowskiej Curie 9 Street, 85-094, Bydgoszcz, Poland.
  • Buchholz L; Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094, Marii Sklodowskiej Curie 9 Street, 85-094, Bydgoszcz, Poland.
  • Drewa T; Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094, Marii Sklodowskiej Curie 9 Street, 85-094, Bydgoszcz, Poland.
Stem Cell Res Ther ; 10(1): 176, 2019 06 13.
Article en En | MEDLINE | ID: mdl-31196214
ABSTRACT

BACKGROUND:

Molecular mechanisms underlying the regenerative process induced by stem cells in tissue-engineered urinary bladder are poorly explained. The study was performed to explore the pathways associated with regeneration process in the urinary bladder reconstructed with adipose tissue-derived mesenchymal stromal cells (ASCs).

METHODS:

Rat urinary bladders were reconstructed with bladder acellular matrix (BAM) (n = 52) or BAM seeded with adipose tissue-derived mesenchymal stromal cells (ASCs) (n = 52). The process of bladder healing was analyzed at 7, 30, 90, and 180 days postoperatively using macroscopic histologic and molecular techniques. Gene expression was analyzed by microarrays and confirmed by real-time PCR.

RESULTS:

Numerous differentially expressed genes (DEGs) were identified between the bladders augmented with BAM seeded with ASCs or BAM only. Pathway analysis of DEGs allows to discover numerous pathways among them Hedgehog, TGF-ß, Jak-STAT, PI3-Akt, and Hippo modulated by ASCs during the healing process of tissue-engineered urinary bladder. Real-time PCR analysis confirmed upregulation of genes involved in the Hedgehog signaling pathway including Shh, Gli1, Smo, Bmp2, Bmp4, Wnt2, Wnt2b, Wnt4, Wnt5a, and Wnt10 in urinary bladders reconstructed with ASC-seeded grafts.

CONCLUSION:

The study provided the unequivocal evidence that ASCs change the molecular pattern of healing in tissue-engineered urinary bladder and indicated which signaling pathways triggered by ASCs can be associated with the regenerative process. These pathways can be used as targets in the future studies on induced urinary bladder regeneration. Of particular interest is the Hedgehog signaling pathway that has been upregulated by ASCs during healing of tissue-engineered urinary bladder.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Regeneración / Vejiga Urinaria / Ingeniería de Tejidos / Trasplante de Células Madre Mesenquimatosas Tipo de estudio: Prognostic_studies Idioma: En Revista: Stem Cell Res Ther Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Regeneración / Vejiga Urinaria / Ingeniería de Tejidos / Trasplante de Células Madre Mesenquimatosas Tipo de estudio: Prognostic_studies Idioma: En Revista: Stem Cell Res Ther Año: 2019 Tipo del documento: Article