Your browser doesn't support javascript.
loading
A systems biology pipeline identifies regulatory networks for stem cell engineering.
Kinney, Melissa A; Vo, Linda T; Frame, Jenna M; Barragan, Jessica; Conway, Ashlee J; Li, Shuai; Wong, Kwok-Kin; Collins, James J; Cahan, Patrick; North, Trista E; Lauffenburger, Douglas A; Daley, George Q.
Afiliación
  • Kinney MA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
  • Vo LT; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA.
  • Frame JM; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Barragan J; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
  • Conway AJ; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA.
  • Li S; Harvard Medical School, Boston, MA, USA.
  • Wong KK; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
  • Collins JJ; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA.
  • Cahan P; Department of Pathology, Beth Israel-Deaconess Medical Center, Boston, MA, USA.
  • North TE; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
  • Lauffenburger DA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA.
  • Daley GQ; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
Nat Biotechnol ; 37(7): 810-818, 2019 07.
Article en En | MEDLINE | ID: mdl-31267104
A major challenge for stem cell engineering is achieving a holistic understanding of the molecular networks and biological processes governing cell differentiation. To address this challenge, we describe a computational approach that combines gene expression analysis, previous knowledge from proteomic pathway informatics and cell signaling models to delineate key transitional states of differentiating cells at high resolution. Our network models connect sparse gene signatures with corresponding, yet disparate, biological processes to uncover molecular mechanisms governing cell fate transitions. This approach builds on our earlier CellNet and recent trajectory-defining algorithms, as illustrated by our analysis of hematopoietic specification along the erythroid lineage, which reveals a role for the EGF receptor family member, ErbB4, as an important mediator of blood development. We experimentally validate this prediction and perturb the pathway to improve erythroid maturation from human pluripotent stem cells. These results exploit an integrative systems perspective to identify new regulatory processes and nodes useful in cell engineering.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Células Madre Hematopoyéticas / Biología de Sistemas / Células Madre Pluripotentes Inducidas / Ingeniería Celular Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Células Madre Hematopoyéticas / Biología de Sistemas / Células Madre Pluripotentes Inducidas / Ingeniería Celular Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2019 Tipo del documento: Article