Your browser doesn't support javascript.
loading
A microfluidic device for label-free isolation of tumor cell clusters from unprocessed blood samples.
Kamyabi, Nabiollah; Huang, Jonathan; Lee, Jaewon J; Bernard, Vincent; Semaan, Alexander; Stephens, Bret; Hurd, Mark W; Vanapalli, Siva A; Maitra, Anirban; Guerrero, Paola A.
Afiliación
  • Vanapalli SA; Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
Biomicrofluidics ; 13(4): 044111, 2019 Jul.
Article en En | MEDLINE | ID: mdl-31462955
Primary cancers disseminate both single circulating tumor cells (CTCs) and CTC "clusters," the latter of which have been shown to demonstrate greater metastatic propensity and adverse impact on prognosis. Many devices developed to isolate single CTCs also capture CTC clusters, but there is translational potential for a platform specifically designed to isolate CTC clusters. Herein, we introduce our microfluidic device for isolating CTC clusters ("Microfluidic Isolation of CTC Clusters" or MICC), which is equipped with ∼10 000 trap chambers that isolate tumor cell clusters based on their large sizes and dynamic force balance against a pillar obstacle in the trap chamber. Whole blood is injected, followed by a wash step to remove blood cells and a final backflush to release intact clusters for downstream analysis. Using clusters from tumor cell-line and confocal microscopy, we verified the ability of the MICC platform to specifically capture tumor cell clusters in the trap chambers. Our flow rate optimization experiments identified 25 µl/min for blood injection, 100 µl/min as wash flow rate, and 300 µl/min as the release flow rate - indicating that 1 ml of whole blood can be processed in less than an hour. Under these optimal flow conditions, we assessed the MICC platform's capture and release performance using blood samples spiked with different concentrations of clusters, revealing a capture efficiency of 66%-87% and release efficiency of 76%-90%. The results from our study suggest that the MICC platform has the potential to isolate CTC clusters from cancer patient blood, enabling it for clinical applications in cancer management.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Biomicrofluidics Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Biomicrofluidics Año: 2019 Tipo del documento: Article