Your browser doesn't support javascript.
loading
Overview obstacle maps for obstacle-aware navigation of autonomous drones.
Pestana, Jesús; Maurer, Michael; Muschick, Daniel; Hofer, Manuel; Fraundorfer, Friedrich.
Afiliación
  • Pestana J; Institute for Computer Graphics and Vision (ICG) Graz University of Technology (TU Graz) Graz Austria.
  • Maurer M; Institute for Computer Graphics and Vision (ICG) Graz University of Technology (TU Graz) Graz Austria.
  • Muschick D; BIOENERGY2020+ GmbH Graz Austria.
  • Hofer M; Institute for Computer Graphics and Vision (ICG) Graz University of Technology (TU Graz) Graz Austria.
  • Fraundorfer F; Institute for Computer Graphics and Vision (ICG) Graz University of Technology (TU Graz) Graz Austria.
J Field Robot ; 36(4): 734-762, 2019 Jun.
Article en En | MEDLINE | ID: mdl-31656453
Achieving the autonomous deployment of aerial robots in unknown outdoor environments using only onboard computation is a challenging task. In this study, we have developed a solution to demonstrate the feasibility of autonomously deploying drones in unknown outdoor environments, with the main capability of providing an obstacle map of the area of interest in a short period of time. We focus on use cases where no obstacle maps are available beforehand, for instance, in search and rescue scenarios, and on increasing the autonomy of drones in such situations. Our vision-based mapping approach consists of two separate steps. First, the drone performs an overview flight at a safe altitude acquiring overlapping nadir images, while creating a high-quality sparse map of the environment by using a state-of-the-art photogrammetry method. Second, this map is georeferenced, densified by fitting a mesh model and converted into an Octomap obstacle map, which can be continuously updated while performing a task of interest near the ground or in the vicinity of objects. The generation of the overview obstacle map is performed in almost real time on the onboard computer of the drone, a map of size 100 m × 75 m is created in ≈ 2.75 min , therefore, with enough time remaining for the drone to execute other tasks inside the area of interest during the same flight. We evaluate quantitatively the accuracy of the acquired map and the characteristics of the planned trajectories. We further demonstrate experimentally the safe navigation of the drone in an area mapped with our proposed approach.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Field Robot Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Field Robot Año: 2019 Tipo del documento: Article