Your browser doesn't support javascript.
loading
Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice.
Li, Lin; Chen, Beibei; Zhu, Ruyuan; Li, Rui; Tian, Yimiao; Liu, Chenyue; Jia, Qiangqiang; Wang, Lili; Tang, Jinfa; Zhao, Dandan; Mo, Fangfang; Liu, Yan; Li, Yu; Orekhov, Alexander N; Brömme, Dieter; Zhang, Dongwei; Gao, Sihua.
Afiliación
  • Li L; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Chen B; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Zhu R; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Li R; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Tian Y; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Liu C; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Jia Q; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Wang L; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Tang J; The First Affiliated Hospital of He'nan University of Traditional Chinese Medicine, Zhengzhou 45000, China.
  • Zhao D; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Mo F; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Liu Y; The Scientific Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Li Y; Department of Histology, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Orekhov AN; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia.
  • Brömme D; Faculty of Dentistry, University of British Columbia, Vancouver BC V6T 1Z3, Canada.
  • Zhang D; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
  • Gao S; Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
Aging (Albany NY) ; 11(21): 9348-9368, 2019 11 12.
Article en En | MEDLINE | ID: mdl-31715585
Gut dysbiosis and oxidative stress may trigger senile osteoporosis. Fructus Ligustri Lucidi (FLL) has bone-preserving properties and affects the intestinal microecology. However, the mechanism of the anti-osteoporotic effect of FLL and its link to the gut microbiota remains to be elucidated. Here, we demonstrated that sustained exposure of ICR mice to D-galactose / sodium nitrite for 90 days causes aging-related osteoporosis and reduced cognitive performance. The aging phenotype is also characterized by increased oxidative stress in serum. This is likely triggered by abnormal changes in the gut microbiota population of Bifidobacterium and the ratio of Firmicutes/ Bacteroidetes that resulted in increased levels of flavin-containing monooxygenase-3 and trimethylamine-N-oxide (TMAO). Moreover, the increased oxidative stress further accelerated aging by increasing tumor necrosis factor-α levels in serum and reducing Sirtuin 6 (Sirt6) expression in long bones, which prompted nuclear factor kappa-B acetylation as well as over-expression and activation of cathepsin K. FLL-treated aging mice revealed a non-osteoporotic bone phenotype and an improvement on the cognitive function. The mechanism underlying these effects may be linked to the regulation of gut microbiota diversity, antioxidant activity, and the levels of TMAO and Sirt6. FLL may represent a potential source for identifying anti-senile osteoporotic drug candidates.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Osteoporosis / Huesos / Extractos Vegetales / Ligustrum / Microbioma Gastrointestinal Tipo de estudio: Prognostic_studies Idioma: En Revista: Aging (Albany NY) Asunto de la revista: GERIATRIA Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Osteoporosis / Huesos / Extractos Vegetales / Ligustrum / Microbioma Gastrointestinal Tipo de estudio: Prognostic_studies Idioma: En Revista: Aging (Albany NY) Asunto de la revista: GERIATRIA Año: 2019 Tipo del documento: Article