Your browser doesn't support javascript.
loading
YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow.
Lundin, Vanessa; Sugden, Wade W; Theodore, Lindsay N; Sousa, Patricia M; Han, Areum; Chou, Stephanie; Wrighton, Paul J; Cox, Andrew G; Ingber, Donald E; Goessling, Wolfram; Daley, George Q; North, Trista E.
Afiliación
  • Lundin V; Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Wyss Institute for
  • Sugden WW; Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  • Theodore LN; Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  • Sousa PM; Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  • Han A; Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  • Chou S; Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
  • Wrighton PJ; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Cox AG; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Ingber DE; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard Uni
  • Goessling W; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medic
  • Daley GQ; Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer
  • North TE; Stem Cell Program, Division of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address: trista.north@childrens.harvard.edu.
Dev Cell ; 52(4): 446-460.e5, 2020 02 24.
Article en En | MEDLINE | ID: mdl-32032546
Hematopoietic stem and progenitor cells (HSPCs), first specified from hemogenic endothelium (HE) in the ventral dorsal aorta (VDA), support lifelong hematopoiesis. Their de novo production promises significant therapeutic value; however, current in vitro approaches cannot efficiently generate multipotent long-lived HSPCs. Presuming this reflects a lack of extrinsic cues normally impacting the VDA, we devised a human dorsal aorta-on-a-chip platform that identified Yes-activated protein (YAP) as a cyclic stretch-induced regulator of HSPC formation. In the zebrafish VDA, inducible Yap overexpression significantly increased runx1 expression in vivo and the number of CD41+ HSPCs downstream of HE specification. Endogenous Yap activation by lats1/2 knockdown or Rho-GTPase stimulation mimicked Yap overexpression and induced HSPCs in embryos lacking blood flow. Notably, in static human induced pluripotent stem cell (iPSC)-derived HE culture, compound-mediated YAP activation enhanced RUNX1 levels and hematopoietic colony-forming potential. Together, our findings reveal a potent impact of hemodynamic Rho-YAP mechanotransduction on HE fate, relevant to de novo human HSPC production.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Factores de Transcripción / Células Madre Hematopoyéticas / Endotelio Vascular / Proteínas de Ciclo Celular / Mecanotransducción Celular / Subunidad alfa 2 del Factor de Unión al Sitio Principal / Células Madre Pluripotentes Inducidas / Hematopoyesis Tipo de estudio: Prognostic_studies Idioma: En Revista: Dev Cell Asunto de la revista: EMBRIOLOGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Factores de Transcripción / Células Madre Hematopoyéticas / Endotelio Vascular / Proteínas de Ciclo Celular / Mecanotransducción Celular / Subunidad alfa 2 del Factor de Unión al Sitio Principal / Células Madre Pluripotentes Inducidas / Hematopoyesis Tipo de estudio: Prognostic_studies Idioma: En Revista: Dev Cell Asunto de la revista: EMBRIOLOGIA Año: 2020 Tipo del documento: Article