Your browser doesn't support javascript.
loading
Safety and Neuroprotective Efficacy of Palm Oil and Tocotrienol-Rich Fraction from Palm Oil: A Systematic Review.
Ismail, Maznah; Alsalahi, Abdulsamad; Imam, Mustapha Umar; Ooi, Der Jiun; Khaza'ai, Huzwah; Aljaberi, Musheer A; Shamsudin, Mad Nasir; Idrus, Zulkifli.
Afiliación
  • Ismail M; Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
  • Alsalahi A; Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
  • Imam MU; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
  • Ooi J; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria.
  • Khaza'ai H; Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom Selangor 42610, Malaysia.
  • Aljaberi MA; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
  • Shamsudin MN; Community Health Department, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
  • Idrus Z; Department of Agribusiness and Bioresource Economics, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
Nutrients ; 12(2)2020 Feb 18.
Article en En | MEDLINE | ID: mdl-32085610
BACKGROUND: Several natural products have been reported to elicit beneficial effects against neurodegenerative disorders due to their vitamin E contents. However, the neuroprotective efficacy of palm oil or its tocotrienol-rich fraction (TRF) from the pre-clinical cell and animal studies have not been systematically reviewed. METHODS: The protocol for this systematic review was registered in "PROSPERO" (CRD42019150408). This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The Medical Subject Heading (MeSH) descriptors of PubMed with Boolean operators were used to construct keywords, including ("Palm Oil"[Mesh]) AND "Nervous System"[Mesh], ("Palm Oil"[Mesh]) AND "Neurodegenerative Diseases"[Mesh], ("Palm Oil"[Mesh]) AND "Brain"[Mesh], and ("Palm Oil"[Mesh]) AND "Cognition"[Mesh], to retrieve the pertinent records from PubMed, Scopus, Web of Science and ScienceDirect from 1990 to 2019, while bibliographies, ProQuest and Google Scholar were searched to ensure a comprehensive identification of relevant articles. Two independent investigators were involved at every stage of the systematic review, while discrepancies were resolved through discussion with a third investigator. RESULTS: All of the 18 included studies in this review (10 animal and eight cell studies) showed that palm oil and TRF enhanced the cognitive performance of healthy animals. In diabetes-induced rats, TRF and α-tocotrienol enhanced cognitive function and exerted antioxidant, anti-apoptotic and anti-inflammatory activities, while in a transgenic Alzheimer's disease (AD) animal model, TRF enhanced the cognitive function and reduced the deposition of ß-amyloid by altering the expression of several genes related to AD and neuroprotection. In cell studies, simultaneous treatment with α-tocotrienols and neurotoxins improved the redox status in neuronal cells better than ϒ- and δ-tocotrienols. Both pre-treatment and post-treatment with α-tocotrienol relative to oxidative insults were able to enhance the survival of neuronal cells via increased antioxidant responses. CONCLUSIONS: Palm oil and its TRF enhanced the cognitive functions of healthy animals, while TRF and α-tocotrienol enhanced the cognitive performance with attenuation of oxidative stress, neuroinflammation and apoptosis in diabetes-induced or transgenic AD animal models. In cell studies, TRF and α-tocotrienol exerted prophylactic neuroprotective effects, while α-tocotrienol exerted therapeutic neuroprotective effects that were superior to those of ϒ- and δ-tocotrienol isomers.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aceite de Palma / Cognición / Estrés Oxidativo / Fármacos Neuroprotectores / Tocotrienoles / Enfermedad de Alzheimer Tipo de estudio: Guideline / Qualitative_research / Systematic_reviews Idioma: En Revista: Nutrients Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aceite de Palma / Cognición / Estrés Oxidativo / Fármacos Neuroprotectores / Tocotrienoles / Enfermedad de Alzheimer Tipo de estudio: Guideline / Qualitative_research / Systematic_reviews Idioma: En Revista: Nutrients Año: 2020 Tipo del documento: Article