Your browser doesn't support javascript.
loading
Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe3O4(001) model catalyst.
Jakub, Zdenek; Hulva, Jan; Ryan, Paul T P; Duncan, David A; Payne, David J; Bliem, Roland; Ulreich, Manuel; Hofegger, Patrick; Kraushofer, Florian; Meier, Matthias; Schmid, Michael; Diebold, Ulrike; Parkinson, Gareth S.
Afiliación
  • Jakub Z; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
  • Hulva J; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
  • Ryan PTP; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK and Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK.
  • Duncan DA; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
  • Payne DJ; Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK.
  • Bliem R; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
  • Ulreich M; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
  • Hofegger P; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
  • Kraushofer F; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
  • Meier M; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at and University of Vienna, Faculty of Physics and Center for Computational Materials Science, 1090 Vienna, Austria.
  • Schmid M; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
  • Diebold U; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
  • Parkinson GS; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria. parkinson@iap.tuwien.ac.at.
Nanoscale ; 12(10): 5866-5875, 2020 Mar 14.
Article en En | MEDLINE | ID: mdl-32103229
ABSTRACT
The structure of a catalyst often changes in reactive environments, and following the structural evolution is crucial for the identification of the catalyst's active phase and reaction mechanism. Here we present an atomic-scale study of CO oxidation on a model Rh/Fe3O4(001) "single-atom" catalyst, which has a very different evolution depending on which of the two reactants, O2 or CO, is adsorbed first. Using temperature-programmed desorption (TPD) combined with scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we show that O2 destabilizes Rh atoms, leading to the formation of RhxOy clusters; these catalyze CO oxidation via a Langmuir-Hinshelwood mechanism at temperatures as low as 200 K. If CO adsorbs first, the system is poisoned for direct interaction with O2, and CO oxidation is dominated by a Mars-van-Krevelen pathway at 480 K.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2020 Tipo del documento: Article