Your browser doesn't support javascript.
loading
Strictly non-adiabatic quantum control of the acetylene dication using an infrared field.
Liekhus-Schmaltz, Chelsea; Zhu, Xiaolei; McCracken, Gregory A; Cryan, James P; Martinez, Todd J; Bucksbaum, Philip H.
Afiliación
  • Liekhus-Schmaltz C; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Zhu X; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • McCracken GA; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Cryan JP; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Martinez TJ; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Bucksbaum PH; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
J Chem Phys ; 152(18): 184302, 2020 May 14.
Article en En | MEDLINE | ID: mdl-32414271
ABSTRACT
We demonstrate the existence of a strictly non-adiabatic control pathway in deprotonation of the acetylene dication. This pathway is identified experimentally by measuring a kinetic energy shift in an ion coincidence experiment. We use a time dependent Schrödinger equation simulation to identify which properties most strongly affect our control. We find that resonant control around conical intersections is limited by the speed of non-adiabatic dynamics.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2020 Tipo del documento: Article