Your browser doesn't support javascript.
loading
Subnanosecond phase transition dynamics in laser-shocked iron.
Hwang, H; Galtier, E; Cynn, H; Eom, I; Chun, S H; Bang, Y; Hwang, G C; Choi, J; Kim, T; Kong, M; Kwon, S; Kang, K; Lee, H J; Park, C; Lee, J I; Lee, Yongmoon; Yang, W; Shim, S-H; Vogt, T; Kim, Sangsoo; Park, J; Kim, Sunam; Nam, D; Lee, J H; Hyun, H; Kim, M; Koo, T-Y; Kao, C-C; Sekine, T; Lee, Yongjae.
Afiliación
  • Hwang H; Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.
  • Galtier E; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Cynn H; High Pressure Physics Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
  • Eom I; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Chun SH; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Bang Y; Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.
  • Hwang GC; Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.
  • Choi J; Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.
  • Kim T; Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.
  • Kong M; Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.
  • Kwon S; Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.
  • Kang K; Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.
  • Lee HJ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Park C; Korea Polar Research Institute, Incheon 21990, Republic of Korea.
  • Lee JI; Korea Polar Research Institute, Incheon 21990, Republic of Korea.
  • Lee Y; Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China.
  • Yang W; Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China.
  • Shim SH; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.
  • Vogt T; NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
  • Kim S; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Park J; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Kim S; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Nam D; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Lee JH; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Hyun H; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Kim M; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Koo TY; Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea.
  • Kao CC; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Sekine T; Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China.
  • Lee Y; Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
Sci Adv ; 6(23): eaaz5132, 2020 Jun.
Article en En | MEDLINE | ID: mdl-32548258
ABSTRACT
Iron is one of the most studied chemical elements due to its sociotechnological and planetary importance; hence, understanding its structural transition dynamics is of vital interest. By combining a short pulse optical laser and an ultrashort free electron laser pulse, we have observed the subnanosecond structural dynamics of iron from high-quality x-ray diffraction data measured at 50-ps intervals up to 2500 ps. We unequivocally identify a three-wave structure during the initial compression and a two-wave structure during the decaying shock, involving all of the known structural types of iron (α-, γ-, and ε-phase). In the final stage, negative lattice pressures are generated by the propagation of rarefaction waves, leading to the formation of expanded phases and the recovery of γ-phase. Our observations demonstrate the unique capability of measuring the atomistic evolution during the entire lattice compression and release processes at unprecedented time and strain rate.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2020 Tipo del documento: Article