Your browser doesn't support javascript.
loading
Active forces shape the metaphase spindle through a mechanical instability.
Oriola, David; Jülicher, Frank; Brugués, Jan.
Afiliación
  • Oriola D; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
  • Jülicher F; Center for Systems Biology Dresden, 01307 Dresden, Germany.
  • Brugués J; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.
Proc Natl Acad Sci U S A ; 117(28): 16154-16159, 2020 07 14.
Article en En | MEDLINE | ID: mdl-32601228
The metaphase spindle is a dynamic structure orchestrating chromosome segregation during cell division. Recently, soft matter approaches have shown that the spindle behaves as an active liquid crystal. Still, it remains unclear how active force generation contributes to its characteristic spindle-like shape. Here we combine theory and experiments to show that molecular motor-driven forces shape the structure through a barreling-type instability. We test our physical model by titrating dynein activity in Xenopus egg extract spindles and quantifying the shape and microtubule orientation. We conclude that spindles are shaped by the interplay between surface tension, nematic elasticity, and motor-driven active forces. Our study reveals how motor proteins can mold liquid crystalline droplets and has implications for the design of active soft materials.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Metafase / Huso Acromático Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Metafase / Huso Acromático Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article