Chemistry of Fluorinated Pyrimidines in the Era of Personalized Medicine.
Molecules
; 25(15)2020 Jul 29.
Article
en En
| MEDLINE
| ID: mdl-32751071
We review developments in fluorine chemistry contributing to the more precise use of fluorinated pyrimidines (FPs) to treat cancer. 5-Fluorouracil (5-FU) is the most widely used FP and is used to treat > 2 million cancer patients each year. We review methods for 5-FU synthesis, including the incorporation of radioactive and stable isotopes to study 5-FU metabolism and biodistribution. We also review methods for preparing RNA and DNA substituted with FPs for biophysical and mechanistic studies. New insights into how FPs perturb nucleic acid structure and dynamics has resulted from both computational and experimental studies, and we summarize recent results. Beyond the well-established role for inhibiting thymidylate synthase (TS) by the 5-FU metabolite 5-fluoro-2'-deoxyuridine-5'-O-monophosphate (FdUMP), recent studies have implicated new roles for RNA modifying enzymes that are inhibited by 5-FU substitution including tRNA methyltransferase 2 homolog A (TRMT2A) and pseudouridylate synthase in 5-FU cytotoxicity. Furthermore, enzymes not previously implicated in FP activity, including DNA topoisomerase 1 (Top1), were established as mediating FP anti-tumor activity. We review recent literature summarizing the mechanisms by which 5-FU inhibits RNA- and DNA-modifying enzymes and describe the use of polymeric FPs that may enable the more precise use of FPs for cancer treatment in the era of personalized medicine.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Pirimidinas
/
Compuestos de Flúor
/
Medicina de Precisión
/
Desarrollo de Medicamentos
Idioma:
En
Revista:
Molecules
Asunto de la revista:
BIOLOGIA
Año:
2020
Tipo del documento:
Article