Your browser doesn't support javascript.
loading
A Machine Learning Approach to Estimate the Glomerular Filtration Rate in Intensive Care Unit Patients Based on Plasma Iohexol Concentrations and Covariates.
Woillard, Jean-Baptiste; Salmon Gandonnière, Charlotte; Destere, Alexandre; Ehrmann, Stephan; Merdji, Hamid; Mathonnet, Armelle; Marquet, Pierre; Barin-Le Guellec, Chantal.
Afiliación
  • Woillard JB; Faculté de Médecine de Limoges, University of Limoges, IPPRITT, 2 rue du docteur Marcland, 87025, Limoges cedex, France. jean-baptiste.woillard@unilim.fr.
  • Salmon Gandonnière C; INSERM, IPPRITT, U1248, 87000, Limoges, France. jean-baptiste.woillard@unilim.fr.
  • Destere A; Department of Pharmacology and Toxicology, CHU Limoges, 87000, Limoges, France. jean-baptiste.woillard@unilim.fr.
  • Ehrmann S; Médecine Intensive Réanimation, INSERM CIC 1415, CRICS-TriggerSep Research Network, CHRU de Tours, 37044, Tours, France.
  • Merdji H; Faculté de Médecine de Limoges, University of Limoges, IPPRITT, 2 rue du docteur Marcland, 87025, Limoges cedex, France.
  • Mathonnet A; INSERM, IPPRITT, U1248, 87000, Limoges, France.
  • Marquet P; Department of Pharmacology and Toxicology, CHU Limoges, 87000, Limoges, France.
  • Barin-Le Guellec C; Médecine Intensive Réanimation, INSERM CIC 1415, CRICS-TriggerSep Research Network, CHRU de Tours, 37044, Tours, France.
Clin Pharmacokinet ; 60(2): 223-233, 2021 02.
Article en En | MEDLINE | ID: mdl-32794122
OBJECTIVE: This work aims to evaluate whether a machine learning approach is appropriate to estimate the glomerular filtration rate in intensive care unit patients based on sparse iohexol pharmacokinetic data and a limited number of predictors. METHODS: Eighty-six unstable patients received 3250 mg of iohexol intravenously and had nine blood samples collected 5, 30, 60, 180, 360, 540, 720, 1080, and 1440 min thereafter. Data splitting was performed to obtain a training (75%) and a test set (25%). To estimate the glomerular filtration rate, 37 candidate potential predictors were considered and the best machine learning approach among multivariate-adaptive regression spline and extreme gradient boosting (Xgboost) was selected based on the root-mean-square error. The approach associated with the best results in a ten-fold cross-validation experiment was then used to select the best limited combination of predictors in the training set, which was finally evaluated in the test set. RESULTS: The Xgboost approach yielded the best performance in the training set. The best combination of covariates comprised iohexol concentrations at times 180 and 720 min; the relative deviation from these theoretical times; the difference between these two concentrations; the Simplified Acute Physiology Score II; serum creatinine; and the fluid balance. It resulted in a root-mean-square error of 6.2 mL/min and an r2 of 0.866 in the test set. Interestingly, the eight patients in the test set with a glomerular filtration rate < 30 mL/min were all predicted accordingly. CONCLUSIONS: Xgboost provided accurate glomerular filtration rate estimation in intensive care unit patients based on two timed blood concentrations after iohexol intravenous administration and three additional predictors.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Yohexol / Aprendizaje Automático / Riñón Tipo de estudio: Prognostic_studies Idioma: En Revista: Clin Pharmacokinet Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Yohexol / Aprendizaje Automático / Riñón Tipo de estudio: Prognostic_studies Idioma: En Revista: Clin Pharmacokinet Año: 2021 Tipo del documento: Article