Your browser doesn't support javascript.
loading
Ramp-Creep Ultrasound Viscoelastography for Measuring Viscoelastic Parameters of Materials.
Lin, Che-Yu.
Afiliación
  • Lin CY; Institute of Applied Mechanics, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
Materials (Basel) ; 13(16)2020 Aug 14.
Article en En | MEDLINE | ID: mdl-32823881
ABSTRACT
Several ultrasound-based methods have been developed to evaluate the viscoelastic properties of materials. The purpose of this study is to introduce a novel viscoelastography method based on ultrasound acoustic radiation force for measuring the parameters relevant to the viscoelastic properties of materials, named ramp-creep ultrasound viscoelastography (RC viscoelastography). RC viscoelastography uses two different ultrasound excitation modes to cause ramp and creep strain responses in the material. By combining and analyzing the information obtained from these two modes of excitation, the viscoelastic parameters of the material can be quantitatively evaluated. Finite element computer simulation demonstrated that RC viscoelastography can accurately evaluate the viscoelastic parameters of the material, including the relaxation and creep time constants as well as the ratio of viscous fluids to solids in the material, except for the region near the top surface of the material. The novelty of RC viscoelastography is that there is no need to know the magnitude of acoustic radiation force and induced stress in the material in order to evaluate the viscoelastic parameters. In the future, experiments are necessary to test the performance of RC viscoelastography in real biomaterials and biological tissues.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2020 Tipo del documento: Article