Your browser doesn't support javascript.
loading
Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation.
Debets, Marjoke F; Tastan, Omur Y; Wisnovsky, Simon P; Malaker, Stacy A; Angelis, Nikolaos; Moeckl, Leonhard K R; Choi, Junwon; Flynn, Helen; Wagner, Lauren J S; Bineva-Todd, Ganka; Antonopoulos, Aristotelis; Cioce, Anna; Browne, William M; Li, Zhen; Briggs, David C; Douglas, Holly L; Hess, Gaelen T; Agbay, Anthony J; Roustan, Chloe; Kjaer, Svend; Haslam, Stuart M; Snijders, Ambrosius P; Bassik, Michael C; Moerner, W E; Li, Vivian S W; Bertozzi, Carolyn R; Schumann, Benjamin.
Afiliación
  • Debets MF; Department of Chemistry, Stanford University, Stanford, CA 94305.
  • Tastan OY; The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Wisnovsky SP; Department of Chemistry, Stanford University, Stanford, CA 94305.
  • Malaker SA; Department of Chemistry, Stanford University, Stanford, CA 94305.
  • Angelis N; Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Moeckl LKR; Department of Chemistry, Stanford University, Stanford, CA 94305.
  • Choi J; Department of Chemistry, Stanford University, Stanford, CA 94305.
  • Flynn H; Proteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Wagner LJS; Department of Chemistry, University of California, Berkeley, CA 94720.
  • Bineva-Todd G; The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Antonopoulos A; Peptide Chemistry Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Cioce A; Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom.
  • Browne WM; The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Li Z; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom.
  • Briggs DC; The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Douglas HL; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom.
  • Hess GT; The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Agbay AJ; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom.
  • Roustan C; Signalling and Structural Biology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Kjaer S; Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Haslam SM; Department of Genetics, Stanford University, Stanford, CA 94305.
  • Snijders AP; Program in Cancer Biology, Stanford University, Stanford, CA 94305.
  • Bassik MC; Department of Chemistry, Stanford University, Stanford, CA 94305.
  • Moerner WE; Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Li VSW; Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom.
  • Bertozzi CR; Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom.
  • Schumann B; Proteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom.
Proc Natl Acad Sci U S A ; 117(41): 25293-25301, 2020 10 13.
Article en En | MEDLINE | ID: mdl-32989128
ABSTRACT
Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Acetilgalactosamina / Glicoproteínas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Acetilgalactosamina / Glicoproteínas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article