Your browser doesn't support javascript.
loading
Summer and winter MgCO3 levels in the skeletons of Arctic bryozoans.
Iglikowska, Anna; Krzeminska, Malgorzata; Renaud, Paul E; Berge, Jørgen; Hop, Haakon; Kuklinski, Piotr.
Afiliación
  • Iglikowska A; Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland. Electronic address: anna.iglikowska@ug.edu.pl.
  • Krzeminska M; Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland.
  • Renaud PE; The University Centre in Svalbard, N-9171 Longyearbyen, Norway; Akvaplan-niva, Fram Centre, N-9296 Tromsø, Norway.
  • Berge J; The University Centre in Svalbard, N-9171 Longyearbyen, Norway; Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; Centre for Autonomous Marine Operations and Systems, Department of Biology, Norwegian
  • Hop H; Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway.
  • Kuklinski P; Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland.
Mar Environ Res ; 162: 105166, 2020 Dec.
Article en En | MEDLINE | ID: mdl-33049544
ABSTRACT
In the Arctic, seasonal patterns in seawater biochemical conditions are shaped by physical, chemical, and biological processes related to the alternation of seasons, i.e. winter polar night and summer midnight sun. In summertime, CO2 concentration is driven by photosynthetic activity of autotrophs which raises seawater pH and carbonate saturation state (Ω). In addition, restriction of photosynthetic activity to the euphotic zone and establishment of seasonal stratification often leads to depth gradients in pH and Ω. In winter, however, severely reduced primary production along with respiration processes lead to higher CO2 concentrations which consequently decrease seawater pH and Ω. Many calcifying invertebrates incorporate other metals, in addition to calcium, into their skeletons, with potential consequences for stability of the mineral matrix and vulnerability to abrasion of predators. We tested whether changes in seawater chemistry due to light-driven activities of marine biota can influence the uptake of Mg into calcified skeletons of Arctic Bryozoa, a dominant faunal group in polar hard-bottom habitats. Our results indicate no clear differences between summer and winter levels of skeletal MgCO3 in five bryozoan species despite differences in Ω between these two seasons. Furthermore, we could not detect any depth-related differences in MgCO3 content in skeletons of selected bryozoans. These results may indicate that Arctic bryozoans are able to control MgCO3 skeletal concentrations biologically. Yet recorded spatial variability in MgCO3 content in skeletons from stations exhibiting different seawater parameters suggests that environmental factors can also, to some extent, shape the skeletal chemistry of Arctic bryozoans.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Briozoos Idioma: En Revista: Mar Environ Res Asunto de la revista: BIOLOGIA / SAUDE AMBIENTAL / TOXICOLOGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Briozoos Idioma: En Revista: Mar Environ Res Asunto de la revista: BIOLOGIA / SAUDE AMBIENTAL / TOXICOLOGIA Año: 2020 Tipo del documento: Article