Your browser doesn't support javascript.
loading
3D Biomimetic Tongue-Emulating Surfaces for Tribological Applications.
Andablo-Reyes, Efren; Bryant, Michael; Neville, Anne; Hyde, Paul; Sarkar, Rik; Francis, Mathew; Sarkar, Anwesha.
Afiliación
  • Andablo-Reyes E; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
  • Bryant M; Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.
  • Neville A; Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.
  • Hyde P; School of Dentistry, University of Leeds, Leeds LS2 9JT, United Kingdom.
  • Sarkar R; School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom.
  • Francis M; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
  • Sarkar A; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
ACS Appl Mater Interfaces ; 12(44): 49371-49385, 2020 Nov 04.
Article en En | MEDLINE | ID: mdl-33105986
ABSTRACT
Oral friction on the tongue surface plays a pivotal role in mechanics of food transport, speech, sensing, and hedonic responses. The highly specialized biophysical features of the human tongue such as micropapillae-dense topology, optimum wettability, and deformability present architectural challenges in designing artificial tongue surfaces, and the absence of such a biomimetic surface impedes the fundamental understanding of tongue-food/fluid interaction. Herein, we fabricate for the first time, a 3D soft biomimetic surface that replicates the topography and wettability of a real human tongue. The 3D-printed fabrication contains a Poisson point process-based (random) papillae distribution and is employed to micromold soft silicone surfaces with wettability modifications. We demonstrate the unprecedented capability of these surfaces to replicate the theoretically defined and simulated collision probability of papillae and to closely resemble the tribological performances of human tongue masks. These de novo biomimetic surfaces pave the way for accurate quantification of mechanical interactions in the soft oral mucosa.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Lengua / Materiales Biomiméticos / Impresión Tridimensional Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Lengua / Materiales Biomiméticos / Impresión Tridimensional Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article