Your browser doesn't support javascript.
loading
From the Ocean to the Lab-Assessing Iron Limitation in Cyanobacteria: An Interface Paper.
Hunnestad, Annie Vera; Vogel, Anne Ilse Maria; Armstrong, Evelyn; Digernes, Maria Guadalupe; Ardelan, Murat Van; Hohmann-Marriott, Martin Frank.
Afiliación
  • Hunnestad AV; Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Vogel AIM; PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Armstrong E; NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, 9054 Dunedin, New Zealand.
  • Digernes MG; Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Ardelan MV; Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
  • Hohmann-Marriott MF; PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
Microorganisms ; 8(12)2020 Nov 29.
Article en En | MEDLINE | ID: mdl-33260337
ABSTRACT
Iron is an essential, yet scarce, nutrient in marine environments. Phytoplankton, and especially cyanobacteria, have developed a wide range of mechanisms to acquire iron and maintain their iron-rich photosynthetic machinery. Iron limitation studies often utilize either oceanographic methods to understand large scale processes, or laboratory-based, molecular experiments to identify underlying molecular mechanisms on a cellular level. Here, we aim to highlight the benefits of both approaches to encourage interdisciplinary understanding of the effects of iron limitation on cyanobacteria with a focus on avoiding pitfalls in the initial phases of collaboration. In particular, we discuss the use of trace metal clean methods in combination with sterile techniques, and the challenges faced when a new collaboration is set up to combine interdisciplinary techniques. Methods necessary for producing reliable data, such as High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS), Flow Injection Analysis Chemiluminescence (FIA-CL), and 77K fluorescence emission spectroscopy are discussed and evaluated and a technical manual, including the preparation of the artificial seawater medium Aquil, cleaning procedures, and a sampling scheme for an iron limitation experiment is included. This paper provides a reference point for researchers to implement different techniques into interdisciplinary iron studies that span cyanobacteria physiology, molecular biology, and biogeochemistry.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2020 Tipo del documento: Article