Your browser doesn't support javascript.
loading
Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma.
Kawahito, D; Bailly-Grandvaux, M; Dozières, M; McGuffey, C; Forestier-Colleoni, P; Peebles, J; Honrubia, J J; Khiar, B; Hansen, S; Tzeferacos, P; Wei, M S; Krauland, C M; Gourdain, P; Davies, J R; Matsuo, K; Fujioka, S; Campbell, E M; Santos, J J; Batani, D; Bhutwala, K; Zhang, S; Beg, F N.
Afiliación
  • Kawahito D; Center for Energy Research, University of California San Diego, La Jolla, CA 92093-0417, USA.
  • Bailly-Grandvaux M; Center for Energy Research, University of California San Diego, La Jolla, CA 92093-0417, USA.
  • Dozières M; Center for Energy Research, University of California San Diego, La Jolla, CA 92093-0417, USA.
  • McGuffey C; Center for Energy Research, University of California San Diego, La Jolla, CA 92093-0417, USA.
  • Forestier-Colleoni P; Center for Energy Research, University of California San Diego, La Jolla, CA 92093-0417, USA.
  • Peebles J; Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA.
  • Honrubia JJ; E.T.S.I. Industriales, Universidad Politecnica de Madrid, Madrid 28040, Spain.
  • Khiar B; Office National d'Etudes et de Recherches Aérospatiales (ONERA), Palaiseau 91123, France.
  • Hansen S; Sandia National Laboratories, Albuquerque, NM 87185, USA.
  • Tzeferacos P; Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA.
  • Wei MS; Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA.
  • Krauland CM; Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA.
  • Gourdain P; General Atomics, San Diego, CA 92186, USA.
  • Davies JR; General Atomics, San Diego, CA 92186, USA.
  • Matsuo K; Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA.
  • Fujioka S; Extreme State Physics Laboratory, University of Rochester, Rochester, NY 14627, USA.
  • Campbell EM; Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA.
  • Santos JJ; Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
  • Batani D; Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
  • Bhutwala K; Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA.
  • Zhang S; Université de Bordeaux-CNRS-CEA, CELIA UMR, 5107 33400 Talence, France.
  • Beg FN; Université de Bordeaux-CNRS-CEA, CELIA UMR, 5107 33400 Talence, France.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200052, 2021 Jan 25.
Article en En | MEDLINE | ID: mdl-33280559
ABSTRACT
Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula see text], the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Revista: Philos Trans A Math Phys Eng Sci Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Revista: Philos Trans A Math Phys Eng Sci Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article