Your browser doesn't support javascript.
loading
FeS2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model.
Cui, Tingyu; Xiao, Zhihui; Wang, Zhenbei; Liu, Chao; Song, Zilong; Wang, Yiping; Zhang, Yuting; Li, Ruoyu; Xu, Bingbing; Qi, Fei; Ikhlaq, Amir.
Afiliación
  • Cui T; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
  • Xiao Z; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
  • Wang Z; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
  • Liu C; Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
  • Song Z; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
  • Wang Y; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
  • Zhang Y; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
  • Li R; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
  • Xu B; State Key Lab of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
  • Qi F; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. Electronic address: qifei@bjfu.edu.cn.
  • Ikhlaq A; Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan.
Environ Pollut ; 282: 117023, 2021 Aug 01.
Article en En | MEDLINE | ID: mdl-33823313
Carbamazepine (CBZ) decay by electro-Fenton (EF) oxidation using a novel FeS2/carbon felt (CF) cathode, instead of a soluble iron salt, was studied with the aim to accelerate the reaction between H2O2 and ferrous ions, which helps to produce more hydroxyl radicals (•OH) and eliminate iron sludge. First, fabricated FeS2 and its derived cathode were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Anodes were then screened, with DSA (Ti/IrO2-RuO2) showing the best performance under EF oxidation regarding CBZ degradation and electrochemical characterization. Several operating parameters of this EF process, such as FeS2 loading, current density, gap between electrodes (GBE), initial [CBZ], and electrolyte type, were also investigated. Accordingly, a nonconsecutive empirical kinetic model was established to predict changes in CBZ concentration under the given operational parameters. The contribution of different oxidation types to the EF process was calculated using kinetic analysis and quenching experiments to verify the role of the FeS2-modified cathode. The reaction contributions of anodic oxidation (AO), H2O2 electrolysis (EP), and EF oxidation to CBZ removal were 12.81%, 7.41%, and 79.77%, respectively. The •OH exposure of EP and EF oxidation was calculated, confirming that •OH exposure was approximately 22.45-fold higher using FeS2-modified CF. Finally, the 19 intermediates formed by CBZ degradation were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Accordingly, four CBZ degradation pathways were proposed. ECOSAR software was used to assess the ecotoxicity of intermediates toward fish, daphnia, and green algae, showing that this novel EF oxidation process showed good toxicity reduction performance. A prolonged EF retention time was proposed to be necessary to obtain clean and safe water, even if the targeted compound was removed at an earlier time.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Carbono Tipo de estudio: Prognostic_studies Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Carbono Tipo de estudio: Prognostic_studies Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2021 Tipo del documento: Article