Your browser doesn't support javascript.
loading
Complete polarization of electronic spins in OLEDs.
Scharff, Tobias; Ratzke, Wolfram; Zipfel, Jonas; Klemm, Philippe; Bange, Sebastian; Lupton, John M.
Afiliación
  • Scharff T; Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Regensburg, Germany.
  • Ratzke W; Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Regensburg, Germany.
  • Zipfel J; Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Regensburg, Germany.
  • Klemm P; Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Regensburg, Germany.
  • Bange S; Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Regensburg, Germany.
  • Lupton JM; Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Regensburg, Germany. john.lupton@ur.de.
Nat Commun ; 12(1): 2071, 2021 Apr 06.
Article en En | MEDLINE | ID: mdl-33824319
ABSTRACT
At low temperatures and high magnetic fields, electron and hole spins in an organic light-emitting diode become polarized so that recombination preferentially forms molecular triplet excited-state species. For low device currents, magnetoelectroluminescence perfectly follows Boltzmann activation, implying a virtually complete polarization outcome. As the current increases, the magnetoelectroluminescence effect is reduced because spin polarization is suppressed by the reduction in carrier residence time within the device. Under these conditions, an additional field-dependent process affecting the spin-dependent recombination emerges, possibly related to the build-up of triplet excitons and their interaction with free charge carriers. Suppression of the EL alone does not prove electronic spin polarization. We therefore probe changes in the spin statistics of recombination directly in a dual singlet-triplet emitting material, which shows a concomitant rise in phosphorescence intensity as fluorescence is suppressed. Finite spin-orbit coupling in these materials gives rise to a microscopic distribution in effective g-factors of electrons and holes, Δg, i.e., a distribution in Larmor frequencies. This Δg effect in the pair, which mixes singlet and triplet, further suppresses singlet-exciton formation at high fields in addition to thermal spin polarization of the individual carriers.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article