Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth.
Fungal Genet Biol
; 152: 103568, 2021 07.
Article
en En
| MEDLINE
| ID: mdl-33991663
Metarhizium anisopliae is an important entomopathogenic species and model for arthropod-fungus interaction studies. This fungus harbors a diverse arsenal of unexplored secondary metabolite biosynthetic gene clusters, which are suggested to perform diverse roles during host interaction and soil subsistence as a saprophytic species. Here we explored an unusual carnitine acyltransferase domain-containing highly reducing polyketide synthase found in the genome of M. anisopliae. Employing heterologous expression in Aspergillus nidulans, two new polyketides were obtained, named BAA and BAB, as well as one known polyketide [(2Z,4E,6E)-octa-2,4,6-trienedioic acid]. Intra-hemocoel injection of the most abundant compound (BAA) in the model-arthropod Galleria mellonella larvae did not induce mortality or noticeable alterations, suggesting that this compound may not harbor insecticidal activity. Also, the potential role of such molecules in polymicrobial interactions was evaluated. Determination of minimum inhibitory concentration assays using distinct fungal species revealed that BAA and BAB did not alter Cryptococcus neoformans growth, while BAA exhibited weak antifungal activity against Saccharomyces cerevisiae. Unexpectedly, these compounds increased Candida albicans growth compared to control conditions. Furthermore, BAA can mitigate the fungicidal effects of fluconazole over C. albicans. Although the exact role of these compounds on the M. anisopliae life cycle is elusive, the described results add up to the complexity of secondary metabolites produced by Metarhizium spp. Moreover, up to our knowledge, these are the first polyketides isolated from filamentous fungi that can boost the growth of another fungal species.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Candida albicans
/
Metarhizium
/
Vías Biosintéticas
/
Policétidos
Idioma:
En
Revista:
Fungal Genet Biol
Asunto de la revista:
GENETICA
/
MICROBIOLOGIA
Año:
2021
Tipo del documento:
Article