Your browser doesn't support javascript.
loading
A novel, multitargeted endogenous metabolic modulator composition impacts metabolism, inflammation, and fibrosis in nonalcoholic steatohepatitis-relevant primary human cell models.
Daou, Nadine; Viader, Andreu; Cokol, Murat; Nitzel, Arianna; Chakravarthy, Manu V; Afeyan, Raffi; Tramontin, Tony; Marukian, Svetlana; Hamill, Michael J.
Afiliación
  • Daou N; Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA.
  • Viader A; Jnana Therapeutics, Boston, MA, USA.
  • Cokol M; Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA.
  • Nitzel A; Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA.
  • Chakravarthy MV; Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA.
  • Afeyan R; Flagship Pioneering, Cambridge, MA, USA.
  • Tramontin T; Holmusk, New York, USA.
  • Marukian S; Valo Health, Cambridge, MA, USA.
  • Hamill MJ; Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA. mhamill@axcellahealth.com.
Sci Rep ; 11(1): 11861, 2021 06 04.
Article en En | MEDLINE | ID: mdl-34088912
Nonalcoholic steatohepatitis (NASH) is a complex metabolic disease of heterogeneous and multifactorial pathogenesis that may benefit from coordinated multitargeted interventions. Endogenous metabolic modulators (EMMs) encompass a broad set of molecular families, including amino acids and related metabolites and precursors. EMMs often serve as master regulators and signaling agents for metabolic pathways throughout the body and hold the potential to impact a complex metabolic disease like NASH by targeting a multitude of pathologically relevant biologies. Here, we describe a study of a novel EMM composition comprising five amino acids and an amino acid derivative (Leucine, Isoleucine, Valine, Arginine, Glutamine, and N-acetylcysteine [LIVRQNac]) and its systematic evaluation across multiple NASH-relevant primary human cell model systems, including hepatocytes, macrophages, and stellate cells. In these model systems, LIVRQNac consistently and simultaneously impacted biology associated with all three core pathophysiological features of NASH-metabolic, inflammatory, and fibrotic. Importantly, it was observed that while the individual constituent amino acids in LIVRQNac can impact specific NASH-related phenotypes in select cell systems, the complete combination was necessary to impact the range of disease-associated drivers examined. These findings highlight the potential of specific and potent multitargeted amino acid combinations for the treatment of NASH.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Fibrosis / Técnicas de Cultivo de Célula / Enfermedad del Hígado Graso no Alcohólico / Inflamación Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Fibrosis / Técnicas de Cultivo de Célula / Enfermedad del Hígado Graso no Alcohólico / Inflamación Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article