Your browser doesn't support javascript.
loading
Molecular genetic analysis of neural stem cells after space flight and simulated microgravity on earth.
Han, Yilin; Zeger, Lukas; Tripathi, Rekha; Egli, Marcel; Ille, Fabian; Lockowandt, Christian; Florin, Gunnar; Atic, Edvin; Redwan, Itedale N; Fredriksson, Robert; Kozlova, Elena N.
Afiliación
  • Han Y; Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden.
  • Zeger L; Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden.
  • Tripathi R; Department of Pharmaceutical Bioscience, Molecular Pharmacology, Uppsala University, Uppsala, Sweden.
  • Egli M; Luzerne School of Engineering and Architecture, Institute of Medical Engineering (IMT), Luzerne, Switzerland.
  • Ille F; Luzerne School of Engineering and Architecture, Institute of Medical Engineering (IMT), Luzerne, Switzerland.
  • Lockowandt C; Swedish Space Corporation, Science Service Division, Solna, Sweden.
  • Florin G; Swedish Space Corporation, Science Service Division, Solna, Sweden.
  • Atic E; CELLINK AB, Gothenburg, Sweden.
  • Redwan IN; CELLINK AB, Gothenburg, Sweden.
  • Fredriksson R; Department of Pharmaceutical Bioscience, Molecular Pharmacology, Uppsala University, Uppsala, Sweden.
  • Kozlova EN; Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden.
Biotechnol Bioeng ; 118(10): 3832-3846, 2021 10.
Article en En | MEDLINE | ID: mdl-34125436
Understanding how stem cells adapt to space flight conditions is fundamental for human space missions and extraterrestrial settlement. We analyzed gene expression in boundary cap neural crest stem cells (BCs), which are attractive for regenerative medicine by their ability to promote proliferation and survival of cocultured and co-implanted cells. BCs were launched to space (space exposed cells) (SEC), onboard sounding rocket MASER 14 as free-floating neurospheres or in a bioprinted scaffold. For comparison, BCs were placed in a random positioning machine (RPM) to simulate microgravity on earth (RPM cells) or were cultured under control conditions in the laboratory. Using next-generation RNA sequencing and data post-processing, we discovered that SEC upregulated genes related to proliferation and survival, whereas RPM cells upregulated genes associated with differentiation and inflammation. Thus, (i) space flight provides unique conditions with distinctly different effects on the properties of BC compared to earth controls, and (ii) the space flight exposure induces postflight properties that reinforce the utility of BC for regenerative medicine and tissue engineering.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Vuelo Espacial / Ingravidez / Regulación de la Expresión Génica / Simulación de Ingravidez / Andamios del Tejido / Células-Madre Neurales Idioma: En Revista: Biotechnol Bioeng Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Vuelo Espacial / Ingravidez / Regulación de la Expresión Génica / Simulación de Ingravidez / Andamios del Tejido / Células-Madre Neurales Idioma: En Revista: Biotechnol Bioeng Año: 2021 Tipo del documento: Article