Your browser doesn't support javascript.
loading
Structural Dynamics of Cytochrome P450 3A4 in the Presence of Substrates and Cytochrome P450 Reductase.
Ducharme, Julie; Sevrioukova, Irina F; Thibodeaux, Christopher J; Auclair, Karine.
Afiliación
  • Ducharme J; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8.
  • Sevrioukova IF; Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States.
  • Thibodeaux CJ; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8.
  • Auclair K; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8.
Biochemistry ; 60(28): 2259-2271, 2021 07 20.
Article en En | MEDLINE | ID: mdl-34196520
ABSTRACT
Cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme in humans and has been associated with harmful drug interactions. The activity of CYP3A4 is known to be modulated by several compounds and by the electron transfer partner, cytochrome P450 reductase (CPR). The underlying mechanism of these effects, however, is poorly understood. We have used hydrogen-deuterium exchange mass spectrometry to investigate the impact of binding of CPR and of three different substrates (7-benzyloxy-4-trifluoromethyl-coumarin, testosterone, and progesterone) on the conformational dynamics of CYP3A4. Here, we report that interaction of CYP3A4 with substrates or with the oxidized or reduced forms of CPR leads to a global rigidification of the CYP3A4 structure. This was evident from the suppression of deuterium exchange in several regions of CYP3A4, including regions known to be involved in protein-protein interactions (helix C) and substrate binding and specificity (helices B' and E, and loop K/ß1). Furthermore, the bimodal isotopic distributions observed for some CYP3A4-derived peptides were drastically impacted upon binding to CPR and/or substrates, suggesting the existence of stable CYP3A4 conformational populations that are perturbed by ligand/CPR binding. The results have implications for understanding the mechanisms of ligand binding, allostery, and catalysis in CYP enzymes.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: NADPH-Ferrihemoproteína Reductasa / Citocromo P-450 CYP3A Idioma: En Revista: Biochemistry Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: NADPH-Ferrihemoproteína Reductasa / Citocromo P-450 CYP3A Idioma: En Revista: Biochemistry Año: 2021 Tipo del documento: Article