Your browser doesn't support javascript.
loading
An HD-ZIP transcription factor, MxHB13, integrates auxin-regulated and juvenility-determined control of adventitious rooting in Malus xiaojinensis.
Li, Xu; Shen, Fei; Xu, Xiaozhao; Zheng, Qingbo; Wang, Yi; Wu, Ting; Li, Wei; Qiu, Changpeng; Xu, Xuefeng; Han, Zhenhai; Zhang, Xinzhong.
Afiliación
  • Li X; College of Horticulture, China Agricultural University, Beijing, China.
  • Shen F; College of Horticulture, China Agricultural University, Beijing, China.
  • Xu X; College of Horticulture, China Agricultural University, Beijing, China.
  • Zheng Q; College of Horticulture, China Agricultural University, Beijing, China.
  • Wang Y; College of Horticulture, China Agricultural University, Beijing, China.
  • Wu T; College of Horticulture, China Agricultural University, Beijing, China.
  • Li W; College of Horticulture, China Agricultural University, Beijing, China.
  • Qiu C; College of Horticulture, China Agricultural University, Beijing, China.
  • Xu X; College of Horticulture, China Agricultural University, Beijing, China.
  • Han Z; College of Horticulture, China Agricultural University, Beijing, China.
  • Zhang X; College of Horticulture, China Agricultural University, Beijing, China.
Plant J ; 107(6): 1663-1680, 2021 09.
Article en En | MEDLINE | ID: mdl-34218490
Adventitious root (AR) formation is a critical factor in the vegetative propagation of forestry and horticultural plants. Competence for AR formation declines in many species during the miR156/SPL-mediated vegetative phase change. Auxin also plays a regulatory role in AR formation. In apple rootstock, both high miR156 expression and exogenous auxin application are prerequisites for AR formation. However, the mechanism by which the miR156/SPL module interacts with auxin in controlling AR formation is unclear. In this paper, leafy cuttings of juvenile (Mx-J) and adult (Mx-A) phase Malus xiaojinensis were used in an RNA-sequencing experiment. The results revealed that numerous genes involved in phytohormone signaling, carbohydrate metabolism, cell dedifferentiation, and reactivation were downregulated in Mx-A cuttings in response to indole butyric acid treatment. Among the differentially expressed genes, an HD-ZIP transcription factor gene, MxHB13, was found to be under negative regulation of MdSPL26 by directly binding to MxHB13 promoter. MxTIFY9 interacts with MxSPL26 and may play a role in co-repressing the expression of MxHB13. The expression of MxTIFY9 was induced by exogenous indole butyric acid. MxHB13 binds to the promoter of MxABCB19-2 and positively affects the expression. A model is proposed in which MxHB13 links juvenility-limited and auxin-limited AR recalcitrance mechanisms in Mx-A.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Factores de Transcripción / Raíces de Plantas / Malus Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Factores de Transcripción / Raíces de Plantas / Malus Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2021 Tipo del documento: Article