Exogenous melatonin-mediated regulation of K+ /Na+ transport, H+ -ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl-stressed tomato seedling roots.
Plant Biol (Stuttg)
; 23(5): 797-805, 2021 Sep.
Article
en En
| MEDLINE
| ID: mdl-34263973
Melatonin (Mel) and hydrogen sulphide (H2 S) have emerged as potential regulators of plant metabolism during abiotic stress. Presence of excess NaCl in the soil is one of the main causes of reduced crop productivity worldwide. The present investigation examines the role of exogenous Mel and endogenous H2 S in tomato seedlings grown under NaCl stress. Effect of 30 µm Mel on endogenous synthesis of H2 S was examined in roots of NaCl-stressed (200 mm) tomato seedlings. Also, the impact of treatments on the oxidative stress markers, transport of K+ and Na+ , and activity of H+ -ATPase and antioxidant enzymes was assessed. Results show that NaCl-stressed seedlings supplemented with 30 µm Mel had increased levels of endogenous H2 S through enhanced L-cysteine desulfhydrase activity. Mel in association with H2 S overcame the deleterious effect of NaCl and induced retention of K+ that maintained a higher K+ /Na+ ratio. Use of plasma membrane inhibitors and an H2 S scavenger revealed that Mel-induced regulation of K+ /Na+ homeostasis in NaCl-stressed seedling roots operates through endogenous H2 S signalling. Synergistic effects of Mel and H2 S also reduced the generation of ROS and oxidative destruction through the enhanced activity of antioxidant enzymes. Thus, it is suggested that the protective function of Mel against NaCl stress operates through an endogenous H2 S-dependent pathway, wherein H+ -ATPase-energized secondary active transport regulates K+ /Na+ homeostasis.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Solanum lycopersicum
/
Sulfuro de Hidrógeno
/
Melatonina
Idioma:
En
Revista:
Plant Biol (Stuttg)
Asunto de la revista:
BOTANICA
Año:
2021
Tipo del documento:
Article