Your browser doesn't support javascript.
loading
Multitask machine learning models for predicting lipophilicity (logP) in the SAMPL7 challenge.
Lenselink, Eelke B; Stouten, Pieter F W.
Afiliación
  • Lenselink EB; Galapagos NV, Generaal De Wittelaan L11 A3, 2800, Mechelen, Belgium. bart.lenselink@glpg.com.
  • Stouten PFW; Galapagos NV, Generaal De Wittelaan L11 A3, 2800, Mechelen, Belgium.
J Comput Aided Mol Des ; 35(8): 901-909, 2021 08.
Article en En | MEDLINE | ID: mdl-34273053
Accurate prediction of lipophilicity-logP-based on molecular structures is a well-established field. Predictions of logP are often used to drive forward drug discovery projects. Driven by the SAMPL7 challenge, in this manuscript we describe the steps that were taken to construct a novel machine learning model that can predict and generalize well. This model is based on the recently described Directed-Message Passing Neural Networks (D-MPNNs). Further enhancements included: both the inclusion of additional datasets from ChEMBL (RMSE improvement of 0.03), and the addition of helper tasks (RMSE improvement of 0.04). To the best of our knowledge, the concept of adding predictions from other models (Simulations Plus logP and logD@pH7.4, respectively) as helper tasks is novel and could be applied in a broader context. The final model that we constructed and used to participate in the challenge ranked 2/17 ranked submissions with an RMSE of 0.66, and an MAE of 0.48 (submission: Chemprop). On other datasets the model also works well, especially retrospectively applied to the SAMPL6 challenge where it would have ranked number one out of all submissions (RMSE of 0.35). Despite the fact that our model works well, we conclude with suggestions that are expected to improve the model even further.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Teoría Cuántica / Solventes / Modelos Estadísticos / Redes Neurales de la Computación / Descubrimiento de Drogas / Aprendizaje Automático / Modelos Químicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Aided Mol Des Asunto de la revista: BIOLOGIA MOLECULAR / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Teoría Cuántica / Solventes / Modelos Estadísticos / Redes Neurales de la Computación / Descubrimiento de Drogas / Aprendizaje Automático / Modelos Químicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Aided Mol Des Asunto de la revista: BIOLOGIA MOLECULAR / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article