Your browser doesn't support javascript.
loading
Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology.
Pérez-Pelegrí, Manuel; Monmeneu, José V; López-Lereu, María P; Pérez-Pelegrí, Lucía; Maceira, Alicia M; Bodí, Vicente; Moratal, David.
Afiliación
  • Pérez-Pelegrí M; Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain.
  • Monmeneu JV; Unidad de Imagen Cardíaca, ERESA-ASCIRES Grupo Biomédico, Valencia, Spain.
  • López-Lereu MP; Unidad de Imagen Cardíaca, ERESA-ASCIRES Grupo Biomédico, Valencia, Spain.
  • Pérez-Pelegrí L; Facultad de Enfermería, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
  • Maceira AM; Unidad de Imagen Cardíaca, ERESA-ASCIRES Grupo Biomédico, Valencia, Spain.
  • Bodí V; Departamento de Medicina, Universitat de València, Estudi General, Valencia, Spain; Servicio de Cardiología, Hospital Clínico Universitario de Valencia, INCLIVA, CIBERCV, Valencia, Spain.
  • Moratal D; Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain. Electronic address: dmoratal@eln.upv.es.
Comput Methods Programs Biomed ; 208: 106275, 2021 Sep.
Article en En | MEDLINE | ID: mdl-34274609
ABSTRACT
BACKGROUND AND

OBJECTIVE:

Magnetic resonance imaging is the most reliable imaging technique to assess the heart. More specifically there is great importance in the analysis of the left ventricle, as the main pathologies directly affect this region. In order to characterize the left ventricle, it is necessary to extract its volume. In this work we present a neural network architecture that is capable of directly estimating the left ventricle volume in short axis cine Magnetic Resonance Imaging in the end-diastolic frame and provide a segmentation of the region which is the basis of the volume calculation, thus offering explainability to the estimated value.

METHODS:

The network was designed to directly target the volumes to estimate, not requiring any labeled segmentation on the images. The network was based on a 3D U-net with extra layers defined in a scanning module that learned features like the circularity of the objects and the volumes to estimate in a weakly-supervised manner. The only targets defined were the left ventricle volumes and the circularity of the object detected through the estimation of the π value derived from its shape. We had access to 397 cases corresponding to 397 different subjects. We randomly selected 98 cases to use as test set.

RESULTS:

The results show a good match between the real and estimated volumes in the test set, with a mean relative error of 8% and a mean absolute error of 9.12 ml with a Pearson correlation coefficient of 0.95. The derived segmentations obtained by the network achieved Dice coefficients with a mean value of 0.79.

CONCLUSIONS:

The proposed method is capable of obtaining the left ventricle volume biomarker in the end-diastole and offer an explanation of how it obtains the result in the form of a segmentation mask without the need of segmentation labels to train the algorithm, making it a potentially more trustworthy method for clinicians and a way to train neural networks more easily when segmentation labels are not readily available.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo / Ventrículos Cardíacos Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo / Ventrículos Cardíacos Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article