Low temperature structures and magnetic interactions in the organic-based ferromagnetic and metamagnetic polymorphs of decamethylferrocenium 7,7,8,8-tetracyano-p-quinodimethanide, [FeCp*2]Ë+[TCNQ]Ë.
Dalton Trans
; 50(32): 11228-11242, 2021 Aug 28.
Article
en En
| MEDLINE
| ID: mdl-34338700
To identify the genesis of the differing magnetic behaviors for the ferro- (FO) and metamagnetic (MM) polymorphs of [FeCp*2][TCNQ] (Cp* = pentamethylcyclopentadienide; TCNQ = 7,7,8,8-tetracyano-p-quinodimethane) the low temperature (18 ± 1 K) structures of each polymorph were determined from high-resolution synchrotron powder diffraction data. Each polymorph possesses chains of alternating S = 1/2 [FeCp*2]Ë+ cations and S = 1/2 [TCNQ]Ë+, but with differing relative orientations. These as well as an additional paramagnetic polymorph do not thermally interconvert. In addition, the room and low (<70 ± 10 K) temperature structures of the MM polymorph, MMRT and MMLT, respectively, differ from that previously reported at 167 K (-106 °C) MM structure, and no evidence of either phase transition was previously noted even from the magnetic data. This transition temperature and enthalpy of this phase transition for MMRTâMM was determined to be 226.5 ± 0.4 K (-46.7 ± 0.4 °C) and 0.68 ± 0.04 kJ mol-1 upon warming, respectively, from differential calorimetry studies (DSC). All three MM phases are triclinic (P1[combining macron]) with the room temperature phase having a doubled unit cell relative to the other two. The lower temperature phase transition involves a small rearrangement of the molecular ions and shift in lattice parameters. These three MM and FO polymorphs have been characterized and form extended 1-D chains with alternating S = 1/2 [FeCp*2]Ë+ cations, and S = 1/2 [TCNQ]Ë- anions, whereas the fifth, paramagnetic (P) polymorph possesses S = 0 π-[TCNQ]22- dimers. At 18 ± 1 K the intrachain FeFe separations are 10.738(2) and 10.439(3) Å for the FO and MMLT polymorphs, respectively. The key structural differences between FO and MMLT at 18 ± 1 K are the 10% shorter interchain NN and the 2.8% shorter intrachain FeFe separation present for MMLT. Computational analysis of all nearest-neighbor spin couplings for the 18 K structures of FO and MMLT indicates that the intrachain [FeCp*2]Ë+[TCNQ]Ë- spin couplings (H = -2Si·Sj) are the strongest (4.95 and 6.5 cm-1 for FO and MMLT, respectively), as previously hypothesized, and are ferromagnetic due to their S = 1/2 spins residing in orthogonal orbitals. The change in relative [TCNQ]Ë-[TCNQ]Ë- orientations leads to a computed change from the ferromagnetic interaction (0.2 cm-1) for FO to an antiferromagnetic interaction (-0.1 cm-1) for MMLT in accord with its observed antiferromagnetic ground state. Hence, the magnetic ground state cannot be solely described by the dominant magnetic interactions.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Dalton Trans
Asunto de la revista:
QUIMICA
Año:
2021
Tipo del documento:
Article