Your browser doesn't support javascript.
loading
Iterative-Trained Semi-Blind Deconvolution Algorithm to Compensate Straylight in Retinal Images.
Ávila, Francisco J; Ares, Jorge; Marcellán, María C; Collados, María V; Remón, Laura.
Afiliación
  • Ávila FJ; Departamento de Física Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
  • Ares J; Departamento de Física Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
  • Marcellán MC; Departamento de Física Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
  • Collados MV; Departamento de Física Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
  • Remón L; Departamento de Física Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
J Imaging ; 7(4)2021 Apr 16.
Article en En | MEDLINE | ID: mdl-34460523
The optical quality of an image depends on both the optical properties of the imaging system and the physical properties of the medium in which the light travels from the object to the final imaging sensor. The analysis of the point spread function of the optical system is an objective way to quantify the image degradation. In retinal imaging, the presence of corneal or cristalline lens opacifications spread the light at wide angular distributions. If the mathematical operator that degrades the image is known, the image can be restored through deconvolution methods. In the particular case of retinal imaging, this operator may be unknown (or partially) due to the presence of cataracts, corneal edema, or vitreous opacification. In those cases, blind deconvolution theory provides useful results to restore important spatial information of the image. In this work, a new semi-blind deconvolution method has been developed by training an iterative process with the Glare Spread Function kernel based on the Richardson-Lucy deconvolution algorithm to compensate a veiling glare effect in retinal images due to intraocular straylight. The method was first tested with simulated retinal images generated from a straylight eye model and applied to a real retinal image dataset composed of healthy subjects and patients with glaucoma and diabetic retinopathy. Results showed the capacity of the algorithm to detect and compensate the veiling glare degradation and improving the image sharpness up to 1000% in the case of healthy subjects and up to 700% in the pathological retinal images. This image quality improvement allows performing image segmentation processing with restored hidden spatial information after deconvolution.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Imaging Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Imaging Año: 2021 Tipo del documento: Article