Your browser doesn't support javascript.
loading
Grounding deep neural network predictions of human categorization behavior in understandable functional features: The case of face identity.
Daube, Christoph; Xu, Tian; Zhan, Jiayu; Webb, Andrew; Ince, Robin A A; Garrod, Oliver G B; Schyns, Philippe G.
Afiliación
  • Daube C; Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK.
  • Xu T; Department of Computer Science and Technology, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, England, UK.
  • Zhan J; Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK.
  • Webb A; Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK.
  • Ince RAA; Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK.
  • Garrod OGB; Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK.
  • Schyns PG; Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, Scotland, UK.
Patterns (N Y) ; 2(10): 100348, 2021 Oct 08.
Article en En | MEDLINE | ID: mdl-34693374
Deep neural networks (DNNs) can resolve real-world categorization tasks with apparent human-level performance. However, true equivalence of behavioral performance between humans and their DNN models requires that their internal mechanisms process equivalent features of the stimulus. To develop such feature equivalence, our methodology leveraged an interpretable and experimentally controlled generative model of the stimuli (realistic three-dimensional textured faces). Humans rated the similarity of randomly generated faces to four familiar identities. We predicted these similarity ratings from the activations of five DNNs trained with different optimization objectives. Using information theoretic redundancy, reverse correlation, and the testing of generalization gradients, we show that DNN predictions of human behavior improve because their shape and texture features overlap with those that subsume human behavior. Thus, we must equate the functional features that subsume the behavioral performances of the brain and its models before comparing where, when, and how these features are processed.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Patterns (N Y) Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Patterns (N Y) Año: 2021 Tipo del documento: Article