Your browser doesn't support javascript.
loading
Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst.
Wang, Jinling; Dai, Xingchao; Wang, Hualin; Liu, Honglai; Rabeah, Jabor; Brückner, Angelika; Shi, Feng; Gong, Ming; Yang, Xuejing.
Afiliación
  • Wang J; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
  • Dai X; State Key Laboratory of Chemical Engineering, ECUST, Shanghai, 200237, China.
  • Wang H; Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), 18059, Rostock, Germany.
  • Liu H; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
  • Rabeah J; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
  • Brückner A; State Key Laboratory of Chemical Engineering, ECUST, Shanghai, 200237, China.
  • Shi F; Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), 18059, Rostock, Germany.
  • Gong M; Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), 18059, Rostock, Germany. angelika.brueckner@catalysis.de.
  • Yang X; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Nat Commun ; 12(1): 6840, 2021 11 25.
Article en En | MEDLINE | ID: mdl-34824262
Diminishing fossil fuel resources and calls for sustainability are driving the urgent need for efficient valorization of renewable resources with high atom efficiency. Inspired from the natural goethite mineral with Mn paragenesis, we develop cost-effective MnO2/goethite catalysts for the efficient valorization of dihydroxyacetone, an important biomass-based platform molecule, into value-added glycolic acid and formic acid with 83.2% and 93.4% yields. The DHA substrates first undergo C-C cleavage to selectively form glycolic acid and hydroxymethyl (·CH2OH) radicals, which are further oxidized into formic acid. The kinetic and isotopic labeling experiments reveal that the catalase-like activity of MnO2 turns the oxidative radicals into oxygen, which then switches towards a hydroxymethyl peroxide (HMOO) pathway for formic acid generation and prevents formic acid over-oxidation. This nature-inspired catalyst design not only significantly improves the carbon efficiency to 86.6%, but also enhances the oxygen atom utilization efficiency from 11.2% to 46.6%, indicating a promising biomass valorization process.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article