Your browser doesn't support javascript.
loading
Aesculetin Accelerates Osteoblast Differentiation and Matrix-Vesicle-Mediated Mineralization.
Na, Woojin; Kang, Min-Kyung; Park, Sin-Hye; Kim, Dong Yeon; Oh, Su Yeon; Oh, Moon-Sik; Park, Sohyun; Kang, Ii-Jun; Kang, Young-Hee.
Afiliación
  • Na W; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
  • Kang MK; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
  • Park SH; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
  • Kim DY; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
  • Oh SY; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
  • Oh MS; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
  • Park S; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
  • Kang IJ; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
  • Kang YH; Department of Food and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article en En | MEDLINE | ID: mdl-34830274
ABSTRACT
The imbalance between bone resorption and bone formation in favor of resorption results in bone loss and deterioration of bone architecture. Osteoblast differentiation is a sequential event accompanying biogenesis of matrix vesicles and mineralization of collagen matrix with hydroxyapatite crystals. Considerable efforts have been made in developing naturally-occurring plant compounds, preventing bone pathologies, or enhancing bone regeneration. Coumarin aesculetin inhibits osteoporosis through hampering the ruffled border formation of mature osteoclasts. However, little is known regarding the effects of aesculetin on the impairment of matrix vesicle biogenesis. MC3T3-E1 cells were cultured in differentiation media with 1-10 µM aesculetin for up to 21 days. Aesculetin boosted the bone morphogenetic protein-2 expression, and alkaline phosphatase activation of differentiating MC3T3-E1 cells. The presence of aesculetin strengthened the expression of collagen type 1 and osteoprotegerin and transcription of Runt-related transcription factor 2 in differentiating osteoblasts for 9 days. When ≥1-5 µM aesculetin was added to differentiating cells for 15-18 days, the induction of non-collagenous proteins of bone sialoprotein II, osteopontin, osteocalcin, and osteonectin was markedly enhanced, facilitating the formation of hydroxyapatite crystals and mineralized collagen matrix. The induction of annexin V and PHOSPHO 1 was further augmented in ≥5 µM aesculetin-treated differentiating osteoblasts for 21 days. In addition, the levels of tissue-nonspecific alkaline phosphatase and collagen type 1 were further enhanced within the extracellular space and on matrix vesicles of mature osteoblasts treated with aesculetin, indicating matrix vesicle-mediated bone mineralization. Finally, aesculetin markedly accelerated the production of thrombospondin-1 and tenascin C in mature osteoblasts, leading to their adhesion to preformed collagen matrix. Therefore, aesculetin enhanced osteoblast differentiation, and matrix vesicle biogenesis and mineralization. These findings suggest that aesculetin may be a potential osteo-inductive agent preventing bone pathologies or enhancing bone regeneration.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Osteoblastos / Umbeliferonas / Matriz Ósea / Calcificación Fisiológica / Diferenciación Celular / Vesículas Extracelulares Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Osteoblastos / Umbeliferonas / Matriz Ósea / Calcificación Fisiológica / Diferenciación Celular / Vesículas Extracelulares Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article