Your browser doesn't support javascript.
loading
Design and characterization of an in vivo injectable hydrogel with effervescently generated porosity for regenerative medicine applications.
Griveau, Louise; Lafont, Marianne; le Goff, Héloïse; Drouglazet, Clémence; Robbiani, Baptiste; Berthier, Aurore; Sigaudo-Roussel, Dominique; Latif, Najma; Visage, Catherine Le; Gache, Vincent; Debret, Romain; Weiss, Pierre; Sohier, Jérôme.
Afiliación
  • Griveau L; Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France.
  • Lafont M; Université de Nantes, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes F-44000, France.
  • le Goff H; Université de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510-7 avenue Jean Capelle, F-69621, Villeurbanne, France.
  • Drouglazet C; Université de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510-7 avenue Jean Capelle, F-69621, Villeurbanne, France.
  • Robbiani B; Université de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510-7 avenue Jean Capelle, F-69621, Villeurbanne, France.
  • Berthier A; Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France.
  • Sigaudo-Roussel D; Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France.
  • Latif N; Imperial College London, Heart Science Centre, Harefield Hospital, Harefield, Middlesex UB9 6JH, UK.
  • Visage CL; Université de Nantes, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes F-44000, France.
  • Gache V; Institut NeuroMyogène (INMG), Muscle Nuclear and Cytoskeleton Architecture (MNCA), CNRS UMR 5310-INSERM U1217-UCBL1-Université de Lyon, 8 avenue Rockefeller, Lyon 69008. France.
  • Debret R; Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France.
  • Weiss P; Université de Nantes, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes F-44000, France.
  • Sohier J; Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France. Electronic address: jerome.sohier@ibcp.fr.
Acta Biomater ; 140: 324-337, 2022 03 01.
Article en En | MEDLINE | ID: mdl-34843951
Injectable hydrogels that polymerize directly in vivo hold significant promises in clinical settings to support the repair of damaged or failing tissues. Existing systems that allow cellular and tissue ingrowth after injection are limited because of deficient porosity and lack of oxygen and nutrient diffusion inside the hydrogels. Here is reported for the first time an in vivo injectable hydrogel in which the porosity does not pre-exist but is formed concomitantly with its in situ injection by a controlled effervescent reaction. The hydrogel tailorable crosslinking, through the reaction of polyethylene glycol with lysine dendrimers, allows the mixing and injection of precursor solutions from a dual-chamber syringe while entrapping effervescently generated CO2 bubbles to form highly interconnected porous networks. The resulting structures allow preserving modular mechanical properties (from 12.7 ± 0.9 to 29.9 ± 1.7 kPa) while being cytocompatible and conducive to swift cellular attachment, proliferation, in-depth infiltration and extracellular matrix deposition. Most importantly, the subcutaneously injected porous hydrogels are biocompatible, undergo tissue remodeling and support extensive neovascularisation, which is of significant advantage for the clinical repair of damaged tissues. Thus, the porosity and injectability of the described effervescent hydrogels, together with their biocompatibility and versatility of mechanical properties, open broad perspectives for various regenerative medicine or material applications, since effervescence could be combined with a variety of other systems of swift crosslinking. STATEMENT OF SIGNIFICANCE: A major challenge in hydrogel design is the synthesis of injectable formulations allowing easy handling and dispensing in the site of interest. However, the lack of adequate porosity inside hydrogels prevent cellular entry and, therefore, vascularization and tissue ingrowth, limiting the regenerative potential of a vast majority of injectable hydrogels. We describe here the development of an acellular hydrogel that can be injected directly in situ while allowing the simultaneous formation of porosity. Such hydrogel would facilitate handling through injection while providing a porous structure supporting vascularization and tissue ingrowth.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Hidrogeles / Medicina Regenerativa Idioma: En Revista: Acta Biomater Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Hidrogeles / Medicina Regenerativa Idioma: En Revista: Acta Biomater Año: 2022 Tipo del documento: Article