Your browser doesn't support javascript.
loading
Recent Development of Photodeformable Crystals: From Materials to Mechanisms.
Huang, Cheng; Huang, Rongjuan; Zhang, Simin; Sun, Haodong; Wang, Hailan; Du, Beibei; Xiao, Yuxin; Yu, Tao; Huang, Wei.
Afiliación
  • Huang C; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
  • Huang R; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
  • Zhang S; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
  • Sun H; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
  • Wang H; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
  • Du B; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
  • Xiao Y; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
  • Yu T; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
  • Huang W; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
Research (Wash D C) ; 2021: 9816535, 2021.
Article en En | MEDLINE | ID: mdl-34870227
ABSTRACT
Photodeformable materials are a class of molecules that can convert photon energy into mechanical energy, which have attracted tremendous attention in the last few decades. Owing to their unique photoinduced deformable properties, including fast light-response and diverse mechanical behaviors, photodeformable materials have exhibited great potential in many practical applications such as actuators, photoswitches, artificial muscles, and bioimaging. In this review, we sort out the current state of photodeformable crystals and classify them into six categories by molecular structures diarylethenes, azobenzenes, anthracenes, olefins, triarylethylenes, and other systems. Three distinct light-responsive mechanisms, photocyclization, trans-cis isomerization, and photodimerization, are revealed to play significant roles in the molecular photodeformation. Their corresponding photodeformable behaviors such as twisting, bending, hopping, bursting, and curling, as well as the potential applications, are also discussed. Furthermore, the challenges and prospective development directions of photodeformable crystals are highlighted.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Research (Wash D C) Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Research (Wash D C) Año: 2021 Tipo del documento: Article