Your browser doesn't support javascript.
loading
Compartmentalized Polymeric Nanoparticles Deliver Vancomycin in a pH-Responsive Manner.
Ural, Merve Seray; Menéndez-Miranda, Mario; Salzano, Giuseppina; Mathurin, Jérémie; Aybeke, Ece Neslihan; Deniset-Besseau, Ariane; Dazzi, Alexandre; Porcino, Marianna; Martineau-Corcos, Charlotte; Gref, Ruxandra.
Afiliación
  • Ural MS; Institut de Sciences Moléculaires d'Orsay, CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
  • Menéndez-Miranda M; Institut de Sciences Moléculaires d'Orsay, CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
  • Salzano G; Institut de Sciences Moléculaires d'Orsay, CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
  • Mathurin J; Institut de Chimie Physique, CNRS UMR 8000, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France.
  • Aybeke EN; Institut de Chimie Physique, CNRS UMR 8000, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France.
  • Deniset-Besseau A; Institut de Chimie Physique, CNRS UMR 8000, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France.
  • Dazzi A; Institut de Chimie Physique, CNRS UMR 8000, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France.
  • Porcino M; Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), CNRS UPR 3079, Université d'Orléans, 45071 Orléans, France.
  • Martineau-Corcos C; Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), CNRS UPR 3079, Université d'Orléans, 45071 Orléans, France.
  • Gref R; ILV UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, Université Paris Saclay, 78035 Versailles, France.
Pharmaceutics ; 13(12)2021 Nov 24.
Article en En | MEDLINE | ID: mdl-34959274
ABSTRACT
Vancomycin (VCM) is a last resort antibiotic in the treatment of severe Gram-positive infections. However, its administration is limited by several drawbacks such as strong pH-dependent charge, tendency to aggregate, low bioavailability, and poor cellular uptake. These drawbacks were circumvented by engineering pH-responsive nanoparticles (NPs) capable to incorporate high VCM payload and deliver it specifically at slightly acidic pH corresponding to infection sites. Taking advantage of peculiar physicochemical properties of VCM, here we show how to incorporate VCM efficiently in biodegradable NPs made of poly(lactic-co-glycolic acid) and polylactic acid (co)polymers. The NPs were prepared by a simple and reproducible method, establishing strong electrostatic interactions between VCM and the (co)polymers' end groups. VCM payloads reached up to 25 wt%. The drug loading mechanism was investigated by solid state nuclear magnetic resonance spectroscopy. The engineered NPs were characterized by a set of advanced physicochemical methods, which allowed examining their morphology, internal structures, and chemical composition on an individual NP basis. The compartmentalized structure of NPs was evidenced by cryogenic transmission electronic microscopy, whereas the chemical composition of the NPs' top layers and core was obtained by electron microscopies associated with energy-dispersive X-ray spectroscopy. Noteworthy, atomic force microscopy coupled to infrared spectroscopy allowed mapping the drug location and gave semiquantitative information about the loadings of individual NPs. In addition, the NPs were stable upon storage and did not release the incorporated drug at neutral pH. Interestingly, a slight acidification of the medium induced a rapid VCM release. The compartmentalized NPs could find potential applications for controlled VCM release at an infected site with local acidic pH.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Pharmaceutics Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Pharmaceutics Año: 2021 Tipo del documento: Article