Your browser doesn't support javascript.
loading
Structural Investigations of Full-Length Insulin Receptor Dynamics and Signalling.
Nielsen, Jeppe; Brandt, Jakob; Boesen, Thomas; Hummelshøj, Tina; Slaaby, Rita; Schluckebier, Gerd; Nissen, Poul.
Afiliación
  • Nielsen J; Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.
  • Brandt J; Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.
  • Boesen T; Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
  • Hummelshøj T; Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.
  • Slaaby R; Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.
  • Schluckebier G; Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark. Electronic address: gesc@novonordisk.com.
  • Nissen P; Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark. Electronic address: pn@mbg.au.dk.
J Mol Biol ; 434(5): 167458, 2022 03 15.
Article en En | MEDLINE | ID: mdl-35074483
Insulin regulates glucose homeostasis via binding and activation of the insulin receptor dimer at two distinct pairs of binding sites 1 and 2. Here, we present cryo-EM studies of full-length human insulin receptor (hIR) in an active state obtained at non-saturating, physiologically relevant insulin conditions. Insulin binds asymmetrically to the receptor under these conditions, occupying up to three of the four possible binding sites. Deletion analysis of the receptor together with site specific peptides and insulin analogs used in binding studies show that both sites 1 and 2 are required for high insulin affinity. We identify a homotypic interaction of the fibronectin type III domain (FnIII-3) of IR resulting in tight interaction of membrane proximal domains of the active, asymmetric receptor dimer. Our results show how insulin binding at two distinct types of sites disrupts the autoinhibited apo-IR dimer and stabilizes the active dimer. We propose an insulin binding and activation mechanism, which is sequential, exhibits negative cooperativity, and is based on asymmetry at physiological insulin concentrations with one to three insulin molecules activating IR.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Receptor de Insulina / Antígenos CD / Insulina Idioma: En Revista: J Mol Biol Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Receptor de Insulina / Antígenos CD / Insulina Idioma: En Revista: J Mol Biol Año: 2022 Tipo del documento: Article