Your browser doesn't support javascript.
loading
Carbohydrate-aromatic interface and molecular architecture of lignocellulose.
Kirui, Alex; Zhao, Wancheng; Deligey, Fabien; Yang, Hui; Kang, Xue; Mentink-Vigier, Frederic; Wang, Tuo.
Afiliación
  • Kirui A; Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
  • Zhao W; Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
  • Deligey F; Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
  • Yang H; Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
  • Kang X; Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
  • Mentink-Vigier F; Institute of Drug Discovery Technology, Ningbo University, 315211, Ningbo, Zhejiang, China.
  • Wang T; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
Nat Commun ; 13(1): 538, 2022 01 27.
Article en En | MEDLINE | ID: mdl-35087039
ABSTRACT
Plant cell walls constitute the majority of lignocellulosic biomass and serve as a renewable resource of biomaterials and biofuel. Extensive interactions between polysaccharides and the aromatic polymer lignin make lignocellulose recalcitrant to enzymatic hydrolysis, but this polymer network remains poorly understood. Here we interrogate the nanoscale assembly of lignocellulosic components in plant stems using solid-state nuclear magnetic resonance and dynamic nuclear polarization approaches. We show that the extent of glycan-aromatic association increases sequentially across grasses, hardwoods, and softwoods. Lignin principally packs with the xylan in a non-flat conformation via non-covalent interactions and partially binds the junction of flat-ribbon xylan and cellulose surface as a secondary site. All molecules are homogeneously mixed in softwoods; this unique feature enables water retention even around the hydrophobic aromatics. These findings unveil the principles of polymer interactions underlying the heterogeneous architecture of lignocellulose, which may guide the rational design of more digestible plants and more efficient biomass-conversion pathways.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Polisacáridos / Biopolímeros / Lignina Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Polisacáridos / Biopolímeros / Lignina Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article