Your browser doesn't support javascript.
loading
The Transition Toward Nitrogen Deprivation in Diatoms Requires Chloroplast Stand-By and Deep Metabolic Reshuffling.
Scarsini, Matteo; Thiriet-Rupert, Stanislas; Veidl, Brigitte; Mondeguer, Florence; Hu, Hanhua; Marchand, Justine; Schoefs, Benoît.
Afiliación
  • Scarsini M; Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML-FR 3473 CNRS, Le Mans University, Le Mans, France.
  • Thiriet-Rupert S; Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML-FR 3473 CNRS, Le Mans University, Le Mans, France.
  • Veidl B; Institut Pasteur, Genetics of Biofilms Laboratory, Paris, France.
  • Mondeguer F; Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML-FR 3473 CNRS, Le Mans University, Le Mans, France.
  • Hu H; Phycotoxins Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France.
  • Marchand J; Key Laboratory of Algal Biology, Chinese Academy of Sciences, Wuhan, China.
  • Schoefs B; Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML-FR 3473 CNRS, Le Mans University, Le Mans, France.
Front Plant Sci ; 12: 760516, 2021.
Article en En | MEDLINE | ID: mdl-35126407
ABSTRACT
Microalgae have adapted to face abiotic stresses by accumulating energy storage molecules such as lipids, which are also of interest to industries. Unfortunately, the impairment in cell division during the accumulation of these molecules constitutes a major bottleneck for the development of efficient microalgae-based biotechnology processes. To address the bottleneck, a multidisciplinary approach was used to study the mechanisms involved in the transition from nitrogen repletion to nitrogen starvation conditions in the marine diatom Phaeodactylum tricornutum that was cultured in a turbidostat. Combining data demonstrate that the different steps of nitrogen deficiency clustered together in a single state in which cells are in equilibrium with their environment. The switch between the nitrogen-replete and the nitrogen-deficient equilibrium is driven by intracellular nitrogen availability. The switch induces a major gene expression change, which is reflected in the reorientation of the carbon metabolism toward an energy storage mode while still operating as a metabolic flywheel. Although the photosynthetic activity is reduced, the chloroplast is kept in a stand-by mode allowing a fast resuming upon nitrogen repletion. Altogether, these results contribute to the understanding of the intricate response of diatoms under stress.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2021 Tipo del documento: Article