Your browser doesn't support javascript.
loading
Ventilation-induced epithelial injury drives biological onset of lung trauma in vitro and is mitigated with prophylactic anti-inflammatory therapeutics.
Nof, Eliram; Artzy-Schnirman, Arbel; Bhardwaj, Saurabh; Sabatan, Hadas; Waisman, Dan; Hochwald, Ori; Gruber, Maayan; Borenstein-Levin, Liron; Sznitman, Josué.
Afiliación
  • Nof E; Faculty of Biomedical Engineering Technion - Israel Institute of Technology Haifa Israel.
  • Artzy-Schnirman A; Faculty of Biomedical Engineering Technion - Israel Institute of Technology Haifa Israel.
  • Bhardwaj S; Faculty of Biomedical Engineering Technion - Israel Institute of Technology Haifa Israel.
  • Sabatan H; Faculty of Biomedical Engineering Technion - Israel Institute of Technology Haifa Israel.
  • Waisman D; Faculty of Medicine Technion - Israel Institute of Technology Haifa Israel.
  • Hochwald O; Department of Neonatology Carmel Medical Center Haifa Israel.
  • Gruber M; Faculty of Medicine Technion - Israel Institute of Technology Haifa Israel.
  • Borenstein-Levin L; Department of Neonatology Ruth Rappaport Children's Hospital, Rambam Healthcare Haifa Israel.
  • Sznitman J; Azrieli Faculty of Medicine Bar-Ilan University Safed Israel.
Bioeng Transl Med ; 7(2): e10271, 2022 May.
Article en En | MEDLINE | ID: mdl-35600654
ABSTRACT
Mortality rates among patients suffering from acute respiratory failure remain perplexingly high despite the maintenance of blood oxygen homeostasis during ventilatory support. The biotrauma hypothesis advocates that mechanical forces from invasive ventilation trigger immunological mediators that spread systemically. Yet, how these forces elicit an immune response remains unclear. Here, a biomimetic in vitro three-dimensional (3D) upper airways model allows to recapitulate lung injury and immune responses induced during invasive mechanical ventilation in neonates. Under such ventilatory support, flow-induced stresses injure the bronchial epithelium of the intubated airways model and directly modulate epithelial cell inflammatory cytokine secretion associated with pulmonary injury. Fluorescence microscopy and biochemical analyses reveal site-specific susceptibility to epithelial erosion in airways from jet-flow impaction and are linked to increases in cell apoptosis and modulated secretions of cytokines IL-6, -8, and -10. In an effort to mitigate the onset of biotrauma, prophylactic pharmacological treatment with Montelukast, a leukotriene receptor antagonist, reduces apoptosis and pro-inflammatory signaling during invasive ventilation of the in vitro model. This 3D airway platform points to a previously overlooked origin of lung injury and showcases translational opportunities in preclinical pulmonary research toward protective therapies and improved protocols for patient care.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Bioeng Transl Med Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Bioeng Transl Med Año: 2022 Tipo del documento: Article