Your browser doesn't support javascript.
loading
Radiative transfer model inversion using high-resolution hyperspectral airborne imagery - Retrieving maize LAI to access biomass and grain yield.
Kayad, Ahmed; Rodrigues, Francelino A; Naranjo, Sergio; Sozzi, Marco; Pirotti, Francesco; Marinello, Francesco; Schulthess, Urs; Defourny, Pierre; Gerard, Bruno; Weiss, Marie.
Afiliación
  • Kayad A; Department TESAF, University of Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
  • Rodrigues FA; Agricultural Engineering Research Institute (AEnRI), Agricultural Research Centre, Giza 12619, Egypt.
  • Naranjo S; CIMMYT-Mexico, Texcoco 56237, Mexico.
  • Sozzi M; Lincoln Agritech Ltd, Lincoln University, Lincoln CP 7674, New Zealand.
  • Pirotti F; CIMMYT-Mexico, Texcoco 56237, Mexico.
  • Marinello F; Department TESAF, University of Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
  • Schulthess U; Department TESAF, University of Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
  • Defourny P; Department TESAF, University of Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
  • Gerard B; CIMMYT China Collaborative Innovation Center, Henan Agricultural University, Zhengzhou 450002, China.
  • Weiss M; Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2 L5.07.16, 1348 Louvain-la-Neuve, Belgium.
Field Crops Res ; 282: 108449, 2022 Jun 01.
Article en En | MEDLINE | ID: mdl-35663617
Mapping crop within-field yield variability provide an essential piece of information for precision agriculture applications. Leaf Area Index (LAI) is an important parameter that describes maize growth, vegetation structure, light absorption and subsequently maize biomass and grain yield (GY). The main goal for this study was to estimate maize biomass and GY through LAI retrieved from hyperspectral aerial images using a PROSAIL model inversion and compare its performance with biomass and GY estimations through simple vegetation index approaches. This study was conducted in two separate maize fields of 12 and 20 ha located in north-west Mexico. Both fields were cultivated with the same hybrid. One field was irrigated by a linear pivot and the other by a furrow irrigation system. Ground LAI data were collected at different crop growth stages followed by maize biomass and GY at the harvesting time. Through a weekly/biweekly airborne flight campaign, a total of 19 mosaics were acquired between both fields with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400 to 850 nanometres (nm) at different crop growth stages. The PROSAIL model was calibrated and validated for retrieving maize LAI by simulating maize canopy spectral reflectance based on crop-specific parameters. The model was used to retrieve LAI from both fields and to subsequently estimate maize biomass and GY. Additionally, different vegetation indices were calculated from the aerial images to also estimate maize yield and compare the indices with PROSAIL based estimations. The PROSAIL validation to retrieve LAI from hyperspectral imagery showed a R2 value of 0.5 against ground LAI with RMSE of 0.8 m2/m2. Maize biomass and GY estimation based on NDRE showed the highest accuracies, followed by retrieved LAI, GNDVI and NDVI with R2 value of 0.81, 0.73, 0.73 and 0.65 for biomass, and 0.83, 0.69, 0.73 and 0.62 for GY estimation, respectively. Furthermore, the late vegetative growth stage at V16 was found to be the best stage for maize yield prediction for all studied indices.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Field Crops Res Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Field Crops Res Año: 2022 Tipo del documento: Article