Your browser doesn't support javascript.
loading
Secondary structure prediction of long noncoding RNA: review and experimental comparison of existing approaches.
Bugnon, L A; Edera, A A; Prochetto, S; Gerard, M; Raad, J; Fenoy, E; Rubiolo, M; Chorostecki, U; Gabaldón, T; Ariel, F; Di Persia, L E; Milone, D H; Stegmayer, G.
Afiliación
  • Bugnon LA; Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.
  • Edera AA; Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.
  • Prochetto S; Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.
  • Gerard M; IAL, CONICET, Ciudad Universitaria UNL, (3000) Santa Fe, Argentina.
  • Raad J; Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.
  • Fenoy E; Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.
  • Rubiolo M; Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.
  • Chorostecki U; Research Institute for Signals, Systems and Computational Intelligence sinc(i) (CONICET-UNL), Ciudad Universitaria, Santa Fe, Argentina.
  • Gabaldón T; Barcelona Supercomputing Center (BSC-CNS), Institute of Research in Biomedicine (IRB), Spain.
  • Ariel F; Barcelona Supercomputing Center (BSC-CNS), Institute of Research in Biomedicine (IRB), Spain.
  • Di Persia LE; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
  • Milone DH; Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
  • Stegmayer G; IAL, CONICET, Ciudad Universitaria UNL, (3000) Santa Fe, Argentina.
Brief Bioinform ; 23(4)2022 07 18.
Article en En | MEDLINE | ID: mdl-35692094
MOTIVATION: In contrast to messenger RNAs, the function of the wide range of existing long noncoding RNAs (lncRNAs) largely depends on their structure, which determines interactions with partner molecules. Thus, the determination or prediction of the secondary structure of lncRNAs is critical to uncover their function. Classical approaches for predicting RNA secondary structure have been based on dynamic programming and thermodynamic calculations. In the last 4 years, a growing number of machine learning (ML)-based models, including deep learning (DL), have achieved breakthrough performance in structure prediction of biomolecules such as proteins and have outperformed classical methods in short transcripts folding. Nevertheless, the accurate prediction for lncRNA still remains far from being effectively solved. Notably, the myriad of new proposals has not been systematically and experimentally evaluated. RESULTS: In this work, we compare the performance of the classical methods as well as the most recently proposed approaches for secondary structure prediction of RNA sequences using a unified and consistent experimental setup. We use the publicly available structural profiles for 3023 yeast RNA sequences, and a novel benchmark of well-characterized lncRNA structures from different species. Moreover, we propose a novel metric to assess the predictive performance of methods, exclusively based on the chemical probing data commonly used for profiling RNA structures, avoiding any potential bias incorporated by computational predictions when using dot-bracket references. Our results provide a comprehensive comparative assessment of existing methodologies, and a novel and public benchmark resource to aid in the development and comparison of future approaches. AVAILABILITY: Full source code and benchmark datasets are available at: https://github.com/sinc-lab/lncRNA-folding. CONTACT: lbugnon@sinc.unl.edu.ar.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: ARN Largo no Codificante Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: ARN Largo no Codificante Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article