Your browser doesn't support javascript.
loading
Quantum Spin Hall Edge States and Interlayer Coupling in Twisted Bilayer WTe2.
Lüpke, Felix; Waters, Dacen; Pham, Anh D; Yan, Jiaqiang; Mandrus, David G; Ganesh, Panchapakesan; Hunt, Benjamin M.
Afiliación
  • Lüpke F; Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Waters D; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Pham AD; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
  • Yan J; Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany.
  • Mandrus DG; Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Ganesh P; Department of Physics, University of Washington, Seattle, Washington 98195, United States.
  • Hunt BM; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Nano Lett ; 22(14): 5674-5680, 2022 Jul 27.
Article en En | MEDLINE | ID: mdl-35759639
The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moiré pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article