Your browser doesn't support javascript.
loading
Deep Learning-Based Football Player Detection in Videos.
Wang, Tianyi; Li, Tongyan.
Afiliación
  • Wang T; College of Physical Education, Qiqihar University, Qiqihar 161000, China.
  • Li T; College of Physical Education, Qiqihar University, Qiqihar 161000, China.
Comput Intell Neurosci ; 2022: 3540642, 2022.
Article en En | MEDLINE | ID: mdl-35865491
The main task of football video analysis is to detect and track players. In this work, we propose a deep convolutional neural network-based football video analysis algorithm. This algorithm aims to detect the football player in real time. First, five convolution blocks were used to extract a feature map of football players with different spatial resolution. Then, features from different levels are combined together with weighted parameters to improve detection accuracy and adapt the model to input images with various resolutions and qualities. Moreover, this algorithm can be extended to a framework for detecting players in any other sports. The experimental results assure the effectiveness of our algorithm.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Fútbol / Fútbol Americano / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies Idioma: En Revista: Comput Intell Neurosci Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Fútbol / Fútbol Americano / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies Idioma: En Revista: Comput Intell Neurosci Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2022 Tipo del documento: Article