Your browser doesn't support javascript.
loading
Proposing Necessary but Not Sufficient Conditions Analysis as a Complement of Traditional Effect Size Measures with an Illustrative Example.
Greco, Ana M; Guilera, Georgina; Maldonado-Murciano, Laura; Gómez-Benito, Juana; Barrios, Maite.
Afiliación
  • Greco AM; Departament de Psicologia Social i Psicologia Quantitativa, Facultat de Psicologia, Universitat de Barcelona, 08035 Barcelona, Spain.
  • Guilera G; Estudis de Dret i Ciència Política, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou, 156, 08018 Barcelona, Spain.
  • Maldonado-Murciano L; Departament de Psicologia Social i Psicologia Quantitativa, Facultat de Psicologia, Universitat de Barcelona, 08035 Barcelona, Spain.
  • Gómez-Benito J; Grup d'Estudis d'Invariància de la Mesura i Anàlisi del Canvi en els Àmbits Social i de la Salut (GEIMAC), Institut de Neurociències (UBNeuro), Universitat de Barcelona, 08035 Barcelona, Spain.
  • Barrios M; Departament de Psicologia Social i Psicologia Quantitativa, Facultat de Psicologia, Universitat de Barcelona, 08035 Barcelona, Spain.
Article en En | MEDLINE | ID: mdl-35954762
Even though classic effect size measures (e.g., Pearson's r, Cohen's d) are widely applied in social sciences, the threshold used to interpret them is somewhat arbitrary. This study proposes necessary condition analysis (NCA) to complement traditional methods. We explain NCA in light of the current limitations of classical techniques, highlighting the advantages in terms of interpretation and translation into practical terms and recognizing its weaknesses. To do so, we provide an example by testing the link between three independent variables with a relevant outcome in a sample of 235 subjects. The traditional Pearson's coefficient was obtained, and NCA was used to test if any of the predictors were necessary but not sufficient conditions. Our study also obtains outcome and condition inefficiency as well as NCA bottlenecks. Comparison and interpretation of the traditional and NCA results were made considering recommendations. We suggest that NCA can complement correlation analyses by adding valuable and applicable information, such as if a variable is needed to achieve a certain outcome level and to what degree.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Correlación de Datos Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Int J Environ Res Public Health Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Correlación de Datos Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Int J Environ Res Public Health Año: 2022 Tipo del documento: Article