Your browser doesn't support javascript.
loading
Fe2O3/MoO3@NG Heterostructure Enables High Pseudocapacitance and Fast Electrochemical Reaction Kinetics for Lithium-Ion Batteries.
Ding, Juan; Sheng, Rui; Zhang, Yue; Huang, Yudai; Cheng, Wenhua; Liu, Zhenjie; Wang, Xingchao; Guo, Yong; Wang, Jiulin; Jia, Dianzeng; Tang, Xincun; Wang, Lei.
Afiliación
  • Ding J; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Sheng R; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Zhang Y; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Huang Y; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Cheng W; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Liu Z; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Wang X; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Guo Y; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Wang J; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Jia D; State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, P.R. China.
  • Tang X; School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P.R. China.
  • Wang L; Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, Minnesota 55812, United States.
ACS Appl Mater Interfaces ; 14(33): 37747-37758, 2022 Aug 24.
Article en En | MEDLINE | ID: mdl-35972126
ABSTRACT
Transition metal oxides (TMOs) hold great potential for lithium-ion batteries (LIBs) on account of the high theoretical capacity. Unfortunately, the unfavorable volume expansion and low intrinsic electronic conductivity of TMOs lead to irreversible structural degradation, disordered particle agglomeration, and sluggish electrochemical reaction kinetics, which result in perishing rate capability and long-term stability. This work reports an Fe2O3/MoO3@NG heterostructure composite for LIBs through the uniform growth of Fe2O3/MoO3 heterostructure quantum dots (HQDs) on the N-doped rGO (NG). Due to the synergistic effects of the "couple tree"-type heterostructures constructed by Fe2O3 and MoO3 with NG, Fe2O3/MoO3@NG delivers a prominent rate performance (322 mA h g-1 at 20 A g-1, 5.0 times higher than that of Fe2O3@NG) and long-term cycle stability (433.5 mA h g-1 after 1700 cycles at 10 A g-1). Theoretical calculations elucidate that the strong covalent Fe-O-Mo, Mo-N, and Fe-N bonds weaken the diffusion energy barrier and promote the Li+-ion reaction to Fe2O3/MoO3@NG, thereby facilitating the structural stability, pseudocapacitance contribution, and electrochemical reaction kinetics. This work may provide a feasible strategy to promote the practical application of TMO-based LIBs.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article