Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging.
J Cereb Blood Flow Metab
; 43(2): 198-209, 2023 02.
Article
en En
| MEDLINE
| ID: mdl-36169033
Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78-0.87]) than lesion volume (0.78 [0.73-0.83]) and ASPECTS (0.77 [0.71-0.83]) (p < 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82-0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59-0.73]) than lesion volume (0.48 [0.40-0.56]) and ASPECTS (0.50 [0.41-0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Isquemia Encefálica
/
Accidente Cerebrovascular
/
Aprendizaje Profundo
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
J Cereb Blood Flow Metab
Año:
2023
Tipo del documento:
Article