Your browser doesn't support javascript.
loading
Synthesis and Characterization of Curcumin-Loaded Nanoparticles of Poly(Glycerol Sebacate): A Novel Highly Stable Anticancer System.
Massironi, Alessio; Marzorati, Stefania; Marinelli, Alessandra; Toccaceli, Marta; Gazzotti, Stefano; Ortenzi, Marco Aldo; Maggioni, Daniela; Petroni, Katia; Verotta, Luisella.
Afiliación
  • Massironi A; Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
  • Marzorati S; Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
  • Marinelli A; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
  • Toccaceli M; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
  • Gazzotti S; Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
  • Ortenzi MA; Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
  • Maggioni D; Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
  • Petroni K; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
  • Verotta L; Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
Molecules ; 27(20)2022 Oct 18.
Article en En | MEDLINE | ID: mdl-36296595
The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of Curcuma longa L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Curcumina / Nanopartículas / Antineoplásicos Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Curcumina / Nanopartículas / Antineoplásicos Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article